IDEAS home Printed from https://ideas.repec.org/p/cla/levarc/122247000000001404.html
   My bibliography  Save this paper

Adaptive Minimax-Regret Treatment Choice, with Application to Drug Approval

Author

Listed:
  • Charles F Manski

Abstract

Suppose that there are two treatments for a condition. One is the status quo, whose properties are known from experience and the other is an innovation, whose properties are not known initially. A new cohort of persons presents itself each period and a planner must choose how to treat this cohort. When facing situations of this kind, it has become common to commission randomized trials of limited duration to learn about the innovation. Rather than wait for the outcomes of interest to unfold over time, surrogate outcomes that can be observed early on are used to judge the success of the innovation. A close approximation to this process is institutionalized in the drug approval protocol of the U. S. Food and Drug Administration. This paper brings welfare-economic and decision-theoretic thinking to bear on the problem of treatment choice, with application to drug approval. I introduce the adaptive minimax-regret (AMR) rule, which applies to each cohort the minimax-regret criterion using the knowledge of treatment response available at the time of treatment. The result is a fractional treatment allocation whenever the available knowledge does not suffice to determine which treatment is better. The rule is adaptive because, as knowledge of treatment response accumulates, successive cohorts are allocated differently across the two treatments. I use the AMR idea to suggest an adaptive drug approval process that permits partial marketing of new drugs while scientifically appropriate long-term clinical trials are underway. The stronger the evidence on health outcomes of interest, the more treatment would be permitted, with a definitive approval decision eventually made when sufficient evidence has accumulated.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Charles F Manski, 2007. "Adaptive Minimax-Regret Treatment Choice, with Application to Drug Approval," Levine's Working Paper Archive 122247000000001404, David K. Levine.
  • Handle: RePEc:cla:levarc:122247000000001404
    as

    Download full text from publisher

    File URL: http://www.dklevine.com/archive/refs4122247000000001404.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Meltzer, David, 2001. "Addressing uncertainty in medical cost-effectiveness analysis: Implications of expected utility maximization for methods to perform sensitivity analysis and the use of cost-effectiveness analysis to s," Journal of Health Economics, Elsevier, vol. 20(1), pages 109-129, January.
    2. Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
    3. Manski, Charles F., 2007. "Minimax-regret treatment choice with missing outcome data," Journal of Econometrics, Elsevier, vol. 139(1), pages 105-115, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy Christensen & Hyungsik Roger Moon & Frank Schorfheide, 2022. "Optimal Decision Rules when Payoffs are Partially Identified," Papers 2204.11748, arXiv.org, revised May 2023.
    2. Lihua Lei & Roshni Sahoo & Stefan Wager, 2023. "Policy Learning under Biased Sample Selection," Papers 2304.11735, arXiv.org.
    3. Charles F. Manski & Aleksey Tetenov, 2015. "Clinical trial design enabling ε-optimal treatment rules," CeMMAP working papers 60/15, Institute for Fiscal Studies.
    4. Jeff Dominitz & Charles F. Manski, 2024. "Comprehensive OOS Evaluation of Predictive Algorithms with Statistical Decision Theory," Papers 2403.11016, arXiv.org, revised May 2024.
    5. Charles F. Manski, 2021. "Econometrics for Decision Making: Building Foundations Sketched by Haavelmo and Wald," Econometrica, Econometric Society, vol. 89(6), pages 2827-2853, November.
    6. Stefanie Behncke & Markus Frölich & Michael Lechner, 2009. "Targeting Labour Market Programmes - Results from a Randomized Experiment," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 145(III), pages 221-268, September.
    7. García-Pola, Bernardo, 2020. "Do people minimize regret in strategic situations? A level-k comparison," Games and Economic Behavior, Elsevier, vol. 124(C), pages 82-104.
    8. Charles F. Manski, 2019. "Statistical inference for statistical decisions," Papers 1909.06853, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tetenov, Aleksey, 2012. "Statistical treatment choice based on asymmetric minimax regret criteria," Journal of Econometrics, Elsevier, vol. 166(1), pages 157-165.
    2. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    3. Charles F. Manski, 2021. "Econometrics for Decision Making: Building Foundations Sketched by Haavelmo and Wald," Econometrica, Econometric Society, vol. 89(6), pages 2827-2853, November.
    4. Charles F. Manski & Aleksey Tetenov, 2015. "Clinical trial design enabling ε-optimal treatment rules," CeMMAP working papers 60/15, Institute for Fiscal Studies.
    5. Stoye, Jörg, 2012. "Minimax regret treatment choice with covariates or with limited validity of experiments," Journal of Econometrics, Elsevier, vol. 166(1), pages 138-156.
    6. Charles F. Manski & Aleksey Tetenov, 2015. "Clinical trial design enabling epsilon-optimal treatment rules," Carlo Alberto Notebooks 430, Collegio Carlo Alberto.
    7. Daido Kido, 2023. "Locally Asymptotically Minimax Statistical Treatment Rules Under Partial Identification," Papers 2311.08958, arXiv.org.
    8. Stoye, Jörg, 2011. "Axioms for minimax regret choice correspondences," Journal of Economic Theory, Elsevier, vol. 146(6), pages 2226-2251.
    9. Charles F. Manski, 2019. "Statistical inference for statistical decisions," Papers 1909.06853, arXiv.org.
    10. Iverson, Terrence, 2012. "Communicating Trade-offs amid Controversial Science: Decision Support for Climate Policy," Ecological Economics, Elsevier, vol. 77(C), pages 74-90.
    11. Neil Christy & A. E. Kowalski, 2024. "Starting Small: Prioritizing Safety over Efficacy in Randomized Experiments Using the Exact Finite Sample Likelihood," Papers 2407.18206, arXiv.org.
    12. Chunrong Ai & Yue Fang & Haitian Xie, 2024. "Data-driven Policy Learning for Continuous Treatments," Papers 2402.02535, arXiv.org, revised Nov 2024.
    13. Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Oct 2024.
    14. Iverson, Terrence, 2013. "Minimax regret discounting," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 598-608.
    15. García-Pola, Bernardo, 2020. "Do people minimize regret in strategic situations? A level-k comparison," Games and Economic Behavior, Elsevier, vol. 124(C), pages 82-104.
    16. Evan Sadler, 2015. "Minimax and the value of information," Theory and Decision, Springer, vol. 78(4), pages 575-586, April.
    17. Achim Ahrens & Alessandra Stampi-Bombelli & Selina Kurer & Dominik Hangartner, 2023. "Optimal multi-action treatment allocation: A two-phase field experiment to boost immigrant naturalization," Papers 2305.00545, arXiv.org, revised Feb 2024.
    18. Alan Brennan & Samer Kharroubi & Anthony O'Hagan & Jim Chilcott, 2007. "Calculating Partial Expected Value of Perfect Information via Monte Carlo Sampling Algorithms," Medical Decision Making, , vol. 27(4), pages 448-470, July.
    19. Karl H. Schlag, 2007. "How to Attain Minimax Risk with Applications to Distribution-Free Nonparametric Estimation and Testing," Economics Working Papers ECO2007/04, European University Institute.
    20. Masahiro Kato & Masaaki Imaizumi & Takuya Ishihara & Toru Kitagawa, 2023. "Asymptotically Optimal Fixed-Budget Best Arm Identification with Variance-Dependent Bounds," Papers 2302.02988, arXiv.org, revised Jul 2023.

    More about this item

    JEL classification:

    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cla:levarc:122247000000001404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David K. Levine (email available below). General contact details of provider: http://www.dklevine.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.