IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v166y2012i1p157-165.html
   My bibliography  Save this article

Statistical treatment choice based on asymmetric minimax regret criteria

Author

Listed:
  • Tetenov, Aleksey

Abstract

This paper studies the problem of treatment choice between a status quo treatment with a known outcome distribution and an innovation whose outcomes are observed only in a finite sample. I evaluate statistical decision rules, which are functions that map sample outcomes into the planner’s treatment choice for the population, based on regret, which is the expected welfare loss due to assigning inferior treatments. I extend previous work started by Manski (2004) that applied the minimax regret criterion to treatment choice problems by considering decision criteria that asymmetrically treat Type I regret (due to mistakenly choosing an inferior new treatment) and Type II regret (due to mistakenly rejecting a superior innovation) and derive exact finite sample solutions to these problems for experiments with normal, Bernoulli and bounded distributions of outcomes. The paper also evaluates the properties of treatment choice and sample size selection based on classical hypothesis tests and power calculations in terms of regret.

Suggested Citation

  • Tetenov, Aleksey, 2012. "Statistical treatment choice based on asymmetric minimax regret criteria," Journal of Econometrics, Elsevier, vol. 166(1), pages 157-165.
  • Handle: RePEc:eee:econom:v:166:y:2012:i:1:p:157-165
    DOI: 10.1016/j.jeconom.2011.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407611001266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2011.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Keisuke Hirano & Jack R. Porter, 2009. "Asymptotics for Statistical Treatment Rules," Econometrica, Econometric Society, vol. 77(5), pages 1683-1701, September.
    2. Manski Charles F, 2009. "Adaptive Partial Drug Approval: A Health Policy Proposal," The Economists' Voice, De Gruyter, vol. 6(4), pages 1-5, March.
    3. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    4. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    5. Manski, Charles F., 2007. "Minimax-regret treatment choice with missing outcome data," Journal of Econometrics, Elsevier, vol. 139(1), pages 105-115, July.
    6. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    7. Stoye, Jörg, 2007. "Minimax Regret Treatment Choice With Incomplete Data And Many Treatments," Econometric Theory, Cambridge University Press, vol. 23(1), pages 190-199, February.
    8. Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
    9. Hayashi, Takashi, 2008. "Regret aversion and opportunity dependence," Journal of Economic Theory, Elsevier, vol. 139(1), pages 242-268, March.
    10. Jörg Stoye, 2011. "Statistical decisions under ambiguity," Theory and Decision, Springer, vol. 70(2), pages 129-148, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iverson, Terrence, 2013. "Minimax regret discounting," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 598-608.
    2. Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
    3. Stoye, Jörg, 2011. "Axioms for minimax regret choice correspondences," Journal of Economic Theory, Elsevier, vol. 146(6), pages 2226-2251.
    4. Stoye, Jörg, 2012. "Minimax regret treatment choice with covariates or with limited validity of experiments," Journal of Econometrics, Elsevier, vol. 166(1), pages 138-156.
    5. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    6. Firpo, Sergio & Galvao, Antonio F. & Kobus, Martyna & Parker, Thomas & Rosa-Dias, Pedro, 2020. "Loss Aversion and the Welfare Ranking of Policy Interventions," IZA Discussion Papers 13176, Institute of Labor Economics (IZA).
    7. Thomas M. Russell, 2020. "Policy Transforms and Learning Optimal Policies," Papers 2012.11046, arXiv.org.
    8. Herweg, Fabian & Müller, Daniel, 2021. "A comparison of regret theory and salience theory for decisions under risk," Journal of Economic Theory, Elsevier, vol. 193(C).
    9. Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Oct 2024.
    10. Charles F. Manski, 2021. "Econometrics for Decision Making: Building Foundations Sketched by Haavelmo and Wald," Econometrica, Econometric Society, vol. 89(6), pages 2827-2853, November.
    11. Daido Kido, 2023. "Locally Asymptotically Minimax Statistical Treatment Rules Under Partial Identification," Papers 2311.08958, arXiv.org.
    12. García-Pola, Bernardo, 2020. "Do people minimize regret in strategic situations? A level-k comparison," Games and Economic Behavior, Elsevier, vol. 124(C), pages 82-104.
    13. Evan Sadler, 2015. "Minimax and the value of information," Theory and Decision, Springer, vol. 78(4), pages 575-586, April.
    14. Achim Ahrens & Alessandra Stampi-Bombelli & Selina Kurer & Dominik Hangartner, 2023. "Optimal multi-action treatment allocation: A two-phase field experiment to boost immigrant naturalization," Papers 2305.00545, arXiv.org, revised Feb 2024.
    15. Diecidue, Enrico & Somasundaram, Jeeva, 2017. "Regret theory: A new foundation," Journal of Economic Theory, Elsevier, vol. 172(C), pages 88-119.
    16. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    17. Isaiah Andrews & Jesse M. Shapiro, 2021. "A Model of Scientific Communication," Econometrica, Econometric Society, vol. 89(5), pages 2117-2142, September.
    18. Aleksey Tetenov, 2016. "An economic theory of statistical testing," CeMMAP working papers 50/16, Institute for Fiscal Studies.
    19. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    20. Charles F. Manski & Aleksey Tetenov, 2014. "The Quantile Performance of Statistical Treatment Rules Using Hypothesis Tests to Allocate a Population to Two Treatments," CeMMAP working papers CWP44/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    Keywords

    Treatment effects; Loss aversion; Statistical decision theory; Hypothesis testing;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:166:y:2012:i:1:p:157-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.