IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.18206.html
   My bibliography  Save this paper

Starting Small: Prioritizing Safety over Efficacy in Randomized Experiments Using the Exact Finite Sample Likelihood

Author

Listed:
  • Neil Christy
  • A. E. Kowalski

Abstract

We use the exact finite sample likelihood and statistical decision theory to answer questions of ``why?'' and ``what should you have done?'' using data from randomized experiments and a utility function that prioritizes safety over efficacy. We propose a finite sample Bayesian decision rule and a finite sample maximum likelihood decision rule. We show that in finite samples from 2 to 50, it is possible for these rules to achieve better performance according to established maximin and maximum regret criteria than a rule based on the Boole-Frechet-Hoeffding bounds. We also propose a finite sample maximum likelihood criterion. We apply our rules and criterion to an actual clinical trial that yielded a promising estimate of efficacy, and our results point to safety as a reason for why results were mixed in subsequent trials.

Suggested Citation

  • Neil Christy & A. E. Kowalski, 2024. "Starting Small: Prioritizing Safety over Efficacy in Randomized Experiments Using the Exact Finite Sample Likelihood," Papers 2407.18206, arXiv.org.
  • Handle: RePEc:arx:papers:2407.18206
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.18206
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    2. Charles F. Manski, 2018. "Reasonable patient care under uncertainty," Health Economics, John Wiley & Sons, Ltd., vol. 27(10), pages 1397-1421, October.
    3. Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
    4. Mullahy, John, 2018. "Individual results may vary: Inequality-probability bounds for some health-outcome treatment effects," Journal of Health Economics, Elsevier, vol. 61(C), pages 151-162.
    5. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    6. Charles F. Manski, 1997. "Monotone Treatment Response," Econometrica, Econometric Society, vol. 65(6), pages 1311-1334, November.
    7. Andrew Gelman & Guido Imbens, 2013. "Why ask Why? Forward Causal Inference and Reverse Causal Questions," NBER Working Papers 19614, National Bureau of Economic Research, Inc.
    8. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 487-535.
    9. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    10. Tetenov, Aleksey, 2012. "Statistical treatment choice based on asymmetric minimax regret criteria," Journal of Econometrics, Elsevier, vol. 166(1), pages 157-165.
    11. Charles F. Manski, 2019. "Treatment Choice With Trial Data: Statistical Decision Theory Should Supplant Hypothesis Testing," The American Statistician, Taylor & Francis Journals, vol. 73(S1), pages 296-304, March.
    12. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    13. Charles F. Manski, 2018. "Response to commentaries on “Reasonable patient care under uncertainty”," Health Economics, John Wiley & Sons, Ltd., vol. 27(10), pages 1431-1434, October.
    14. Charles F. Manski, 1997. "The Mixing Problem in Programme Evaluation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 537-553.
    15. Manski, Charles F., 2007. "Minimax-regret treatment choice with missing outcome data," Journal of Econometrics, Elsevier, vol. 139(1), pages 105-115, July.
    16. Fan, Yanqin & Park, Sang Soo, 2010. "Sharp Bounds On The Distribution Of Treatment Effects And Their Statistical Inference," Econometric Theory, Cambridge University Press, vol. 26(3), pages 931-951, June.
    17. Stoye, Jörg, 2012. "Minimax regret treatment choice with covariates or with limited validity of experiments," Journal of Econometrics, Elsevier, vol. 166(1), pages 138-156.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    2. Charles F. Manski, 2021. "Econometrics for Decision Making: Building Foundations Sketched by Haavelmo and Wald," Econometrica, Econometric Society, vol. 89(6), pages 2827-2853, November.
    3. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    4. Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Papers 2201.07072, arXiv.org, revised Apr 2023.
    5. Charles F. Manski & Aleksey Tetenov, 2015. "Clinical trial design enabling ε-optimal treatment rules," CeMMAP working papers 60/15, Institute for Fiscal Studies.
    6. Thomas M. Russell, 2020. "Policy Transforms and Learning Optimal Policies," Papers 2012.11046, arXiv.org.
    7. Charles F. Manski & Aleksey Tetenov, 2015. "Clinical trial design enabling epsilon-optimal treatment rules," Carlo Alberto Notebooks 430, Collegio Carlo Alberto.
    8. Daido Kido, 2023. "Locally Asymptotically Minimax Statistical Treatment Rules Under Partial Identification," Papers 2311.08958, arXiv.org.
    9. Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
    10. Chunrong Ai & Yue Fang & Haitian Xie, 2024. "Data-driven Policy Learning for Continuous Treatments," Papers 2402.02535, arXiv.org, revised Nov 2024.
    11. Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Oct 2024.
    12. Marx, Philip, 2024. "Sharp bounds in the latent index selection model," Journal of Econometrics, Elsevier, vol. 238(2).
    13. Vishal Kamat, 2017. "Identifying the Effects of a Program Offer with an Application to Head Start," Papers 1711.02048, arXiv.org, revised Aug 2023.
    14. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    15. Timothy B. Armstrong & Shu Shen, 2013. "Inference on Optimal Treatment Assignments," Cowles Foundation Discussion Papers 1927RR, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    16. Firpo, Sergio & Galvao, Antonio F. & Kobus, Martyna & Parker, Thomas & Rosa-Dias, Pedro, 2020. "Loss Aversion and the Welfare Ranking of Policy Interventions," IZA Discussion Papers 13176, Institute of Labor Economics (IZA).
    17. Charles F. Manski, 2018. "Reasonable patient care under uncertainty," Health Economics, John Wiley & Sons, Ltd., vol. 27(10), pages 1397-1421, October.
    18. Charles F. Manski & Aleksey Tetenov, 2014. "The Quantile Performance of Statistical Treatment Rules Using Hypothesis Tests to Allocate a Population to Two Treatments," CeMMAP working papers CWP44/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Azevedo, Eduardo M. & Mao, David & Montiel Olea, José Luis & Velez, Amilcar, 2023. "The A/B testing problem with Gaussian priors," Journal of Economic Theory, Elsevier, vol. 210(C).
    20. Keisuke Hirano & Jack R. Porter, 2016. "Panel Asymptotics and Statistical Decision Theory," The Japanese Economic Review, Japanese Economic Association, vol. 67(1), pages 33-49, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.18206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.