IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt1r7227tt.html
   My bibliography  Save this paper

A Combined Quantitative and Qualitative Approach to Planning for Improved Intermodal Connectivity at California Airports

Author

Listed:
  • Lu, Xiao-Yun
  • Gosling, Geoffrey D.
  • Ceder, Avi
  • Tung, Steven
  • Tso, Kristin
  • Shladover, Steven
  • Xiong, Jing
  • Yoon, Sangwon

Abstract

This report has been prepared as the final deliverable for a research project developing a combined quantitative and qualitative approach to planning for improved intermodal connectivity at California airports. The quantitative approach involves the development of an Intermodal Airport Ground Access Planning Tool (IAPT) that combines transportation system performance measurement, an air passenger mode choice model, and a model of transportation provider behavior, and is designed to interface with a traffic network analysis model. The qualitative approach is used to enhance the quantitative analysis to account for factors that are difficult to quantify and to provide recommended policy and planning guidelines.

Suggested Citation

  • Lu, Xiao-Yun & Gosling, Geoffrey D. & Ceder, Avi & Tung, Steven & Tso, Kristin & Shladover, Steven & Xiong, Jing & Yoon, Sangwon, 2009. "A Combined Quantitative and Qualitative Approach to Planning for Improved Intermodal Connectivity at California Airports," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1r7227tt, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt1r7227tt
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/1r7227tt.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ceder, A. & Golany, B. & Tal, O., 2001. "Creating bus timetables with maximal synchronization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(10), pages 913-928, December.
    2. Randolph W. Hall, 1985. "Vehicle Scheduling at a Transportation Terminal with Random Delay en Route," Transportation Science, INFORMS, vol. 19(3), pages 308-320, August.
    3. Small, Kenneth A, 1987. "A Discrete Choice Model for Ordered Alternatives," Econometrica, Econometric Society, vol. 55(2), pages 409-424, March.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, October.
    5. Pels, Eric & Nijkamp, Peter & Rietveld, Piet, 2003. "Access to and competition between airports: a case study for the San Francisco Bay area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(1), pages 71-83, January.
    6. Arnold, Pierre & Peeters, Dominique & Thomas, Isabelle, 2004. "Modelling a rail/road intermodal transportation system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(3), pages 255-270, May.
    7. Evans, A., 1990. "Competition And The Structure Of Local Bus Market," Papers 90-17, Flinders of South Australia - Discipline of Economics.
    8. Patrick T. Harker, 1988. "Private Market Participation in Urban Mass Transportation: Application of Computable Equilibrium Models of Network Competition," Transportation Science, INFORMS, vol. 22(2), pages 96-111, May.
    9. Ceder, Avishai & Wilson, Nigel H. M., 1986. "Bus network design," Transportation Research Part B: Methodological, Elsevier, vol. 20(4), pages 331-344, August.
    10. Zubieta, Lourdes, 1998. "A network equilibrium model for oligopolistic competition in city bus services," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 413-422, August.
    11. Lu, Xiao-Yun & Gosling, Geoffrey D. & Xiong, Jing, 2006. "Opportunities for Improved Intermodal Connectvitiy at California Airports," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1b57z0g3, Institute of Transportation Studies, UC Berkeley.
    12. Psaraki, Voula & Abacoumkin, Costas, 2002. "Access mode choice for relocated airports: the new Athens International Airport," Journal of Air Transport Management, Elsevier, vol. 8(2), pages 89-98.
    13. Zhou, Jing & Lam, William H.K. & Heydecker, Benjamin G., 2005. "The generalized Nash equilibrium model for oligopolistic transit market with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 519-544, July.
    14. Hess, Stephane & Polak, John W., 2005. "Mixed logit modelling of airport choice in multi-airport regions," Journal of Air Transport Management, Elsevier, vol. 11(2), pages 59-68.
    15. Golob, Thomas F., 2001. "Joint models of attitudes and behavior in evaluation of the San Diego I-15 congestion pricing project," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(6), pages 495-514, July.
    16. Harker, Patrick T., 1991. "Generalized Nash games and quasi-variational inequalities," European Journal of Operational Research, Elsevier, vol. 54(1), pages 81-94, September.
    17. Ceder, Avishai & Yim, Youngbin, 2003. "Integrated Smart Feeder / Shuttle Bus Service," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5bz576tn, Institute of Transportation Studies, UC Berkeley.
    18. Lo, Hong K. & Szeto, W. Y., 2004. "Modeling advanced traveler information services: static versus dynamic paradigms," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 495-515, July.
    19. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Xiao-Yun & Gosling, Geoffrey D. & Shladover, Steven E. & Xiong, Jing & Ceder, Avi, 2006. "Development of a Modeling Framework for Analyzing Improvements in Intermodal Connectivity at California Airports," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt586755r9, Institute of Transportation Studies, UC Berkeley.
    2. Hess, Stephane, 2007. "Posterior analysis of random taste coefficients in air travel behaviour modelling," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 203-212.
    3. Birolini, Sebastian & Malighetti, Paolo & Redondi, Renato & Deforza, Paolo, 2019. "Access mode choice to low-cost airports: Evaluation of new direct rail services at Milan-Bergamo airport," Transport Policy, Elsevier, vol. 73(C), pages 113-124.
    4. Zhou, Jing & Lam, William H.K. & Heydecker, Benjamin G., 2005. "The generalized Nash equilibrium model for oligopolistic transit market with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 519-544, July.
    5. Marcucci, Edoardo & Gatta, Valerio, 2011. "Regional airport choice: Consumer behaviour and policy implications," Journal of Transport Geography, Elsevier, vol. 19(1), pages 70-84.
    6. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    7. Stephane Hess & Denis Bolduc & John Polak, 2010. "Random covariance heterogeneity in discrete choice models," Transportation, Springer, vol. 37(3), pages 391-411, May.
    8. Koster, Paul & Kroes, Eric & Verhoef, Erik, 2011. "Travel time variability and airport accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1545-1559.
    9. Birolini, Sebastian & Cattaneo, Mattia & Malighetti, Paolo & Morlotti, Chiara, 2020. "Integrated origin-based demand modeling for air transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    10. Stephane Hess, 2005. "Analysing air-travel choice behaviour in the Greater London area," ERSA conference papers ersa05p736, European Regional Science Association.
    11. Qin, Huanmei & Gao, Jianqiang & Zhang, Guohui & Chen, Yanyan & Wu, Songhua, 2017. "Nested logit model formation to analyze airport parking behavior based on stated preference survey studies," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 164-175.
    12. Chavis, Celeste & Daganzo, Carlos F., 2013. "Analyzing the structure of informal transit: The evening commute problem," Research in Transportation Economics, Elsevier, vol. 39(1), pages 277-284.
    13. Ishii, Jun & Jun, Sunyoung & Van Dender, Kurt, 2009. "Air travel choices in multi-airport markets," Journal of Urban Economics, Elsevier, vol. 65(2), pages 216-227, March.
    14. Matthew C. Harding & Jerry Hausman, 2007. "Using A Laplace Approximation To Estimate The Random Coefficients Logit Model By Nonlinear Least Squares," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1311-1328, November.
    15. Wenyuan Zhou & Xuanrong Li & Zhenguo Shi & Bingjie Yang & Dongxu Chen, 2023. "Impact of Carpooling under Mobile Internet on Travel Mode Choices and Urban Traffic Volume: The Case of China," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    16. Liu, Qi & Chow, Joseph Y.J., 2022. "Efficient and stable data-sharing in a public transit oligopoly as a coopetitive game," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 64-87.
    17. Hess, Stephane & Polak, John W., 2005. "Mixed logit modelling of airport choice in multi-airport regions," Journal of Air Transport Management, Elsevier, vol. 11(2), pages 59-68.
    18. Johnson, Daniel & Hess, Stephane & Matthews, Bryan, 2014. "Understanding air travellers' trade-offs between connecting flights and surface access characteristics," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 70-77.
    19. Zhi-Chun Li & William Lam & S. Wong, 2012. "Optimization of Number of Operators and Allocation of New Lines in an Oligopolistic Transit Market," Networks and Spatial Economics, Springer, vol. 12(1), pages 1-20, March.
    20. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt1r7227tt. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.