IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v73y2019icp113-124.html
   My bibliography  Save this article

Access mode choice to low-cost airports: Evaluation of new direct rail services at Milan-Bergamo airport

Author

Listed:
  • Birolini, Sebastian
  • Malighetti, Paolo
  • Redondi, Renato
  • Deforza, Paolo

Abstract

The purpose of this study is to investigate air passengers' choice of the access mode at low-cost airports, with the aim of supporting policy makers in evaluating improvements to the current ground access transport system. We assess the impact of the introduction of a new direct rail service on the airport's accessibility by passengers, relying on revealed preference data collected at the Milan-Bergamo airport in the period 2013–2016. We first implement a mixed logit model to examine the behavior of outgoing passengers and evaluate their sensitivity to various access time components and cost incurred. Second, based on the estimated coefficients, the introduction of direct rail services from/to Milan is assessed by means of a sensitivity analysis. Results show that low-cost airports should be aware of customers' priorities and not simply aim to deliver the solution with the lowest possible cost. The estimated value of time measures—equal to €40/h, €24/h, and €19/h for traffic, out-of-vehicle travel time, and in-vehicle travel time, respectively—reveal that low-cost airline passengers are not exclusively cost-driven when confronted with the access mode choice but do place considerable value on access time savings. This finding is corroborated by the assessment of different rail services, showing how the introduction of an airport express train has the potential to increase train usage much more (+7%) than the extension of the existing regional commuter service (+1%).

Suggested Citation

  • Birolini, Sebastian & Malighetti, Paolo & Redondi, Renato & Deforza, Paolo, 2019. "Access mode choice to low-cost airports: Evaluation of new direct rail services at Milan-Bergamo airport," Transport Policy, Elsevier, vol. 73(C), pages 113-124.
  • Handle: RePEc:eee:trapol:v:73:y:2019:i:c:p:113-124
    DOI: 10.1016/j.tranpol.2018.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X18301756
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2018.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hausman, Jerry & McFadden, Daniel, 1984. "Specification Tests for the Multinomial Logit Model," Econometrica, Econometric Society, vol. 52(5), pages 1219-1240, September.
    2. Koster, Paul & Kroes, Eric & Verhoef, Erik, 2011. "Travel time variability and airport accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1545-1559.
    3. Psaraki, Voula & Abacoumkin, Costas, 2002. "Access mode choice for relocated airports: the new Athens International Airport," Journal of Air Transport Management, Elsevier, vol. 8(2), pages 89-98.
    4. Akar, Gulsah, 2013. "Ground access to airports, case study: Port Columbus International Airport," Journal of Air Transport Management, Elsevier, vol. 30(C), pages 25-31.
    5. Morandi, Valentina & Malighetti, Paolo & Paleari, Stefano & Redondi, Renato, 2015. "Codesharing agreements by low-cost carriers: An explorative analysis," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 184-191.
    6. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    7. Hanaoka, Shinya & Saraswati, Batari, 2011. "Low cost airport terminal locations and configurations," Journal of Air Transport Management, Elsevier, vol. 17(5), pages 314-319.
    8. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, January.
    9. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    10. Klophaus, Richard & Conrady, Roland & Fichert, Frank, 2012. "Low cost carriers going hybrid: Evidence from Europe," Journal of Air Transport Management, Elsevier, vol. 23(C), pages 54-58.
    11. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
    12. Jou, Rong-Chang & Hensher, David A. & Hsu, Tzu-Lan, 2011. "Airport ground access mode choice behavior after the introduction of a new mode: A case study of Taoyuan International Airport in Taiwan," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(3), pages 371-381, May.
    13. Pels, Eric & Nijkamp, Peter & Rietveld, Piet, 2003. "Access to and competition between airports: a case study for the San Francisco Bay area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(1), pages 71-83, January.
    14. Bentivogli, Chiara, 2009. "Taxi regulation and the Bersani reform: a survey of major Italian cities," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 41, pages 1-27.
    15. Hess, Stephane & Bierlaire, Michel & Polak, John W., 2005. "Estimation of value of travel-time savings using mixed logit models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 221-236.
    16. Mason, Keith J., 2001. "Marketing low-cost airline services to business travellers," Journal of Air Transport Management, Elsevier, vol. 7(2), pages 103-109.
    17. Bhat, Chandra R., 2003. "Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 837-855, November.
    18. Hess, Stephane & Polak, John W., 2005. "Mixed logit modelling of airport choice in multi-airport regions," Journal of Air Transport Management, Elsevier, vol. 11(2), pages 59-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Truong, Dothang & Pan, Jing Yu & Buaphiban, Thapanat, 2020. "Low cost carriers in Southeast Asia: How does ticket price change the way passengers make their airline selection?," Journal of Air Transport Management, Elsevier, vol. 86(C).
    2. Silva, Henrique Guilherme Montes & Guterres, Marcelo Xavier & Bandeira, Michelle Carvalho Galvão da Silva Pinto & Alves, Cláudio Jorge Pinto & Sonáglio, Cláudio Abano, 2022. "The role of security in passengers' airport ground access choices: A statistical evaluation," Journal of Air Transport Management, Elsevier, vol. 103(C).
    3. Kristoffersson, Ida & Berglund , Svante, 2020. "Modelling connection trips to long-distance travel : state-of-the-art and directions for future research," Papers 2020:5, Research Programme in Transport Economics.
    4. Lu, Jing & Meng, Yucan & Timmermans, Harry & Zhang, Anming, 2021. "Modeling hesitancy in airport choice: A comparison of discrete choice and machine learning methods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 230-250.
    5. Birolini, Sebastian & Antunes, António Pais & Cattaneo, Mattia & Malighetti, Paolo & Paleari, Stefano, 2021. "Integrated flight scheduling and fleet assignment with improved supply-demand interactions," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 162-180.
    6. Gunay, Gurkan & Gokasar, Ilgin, 2021. "Market segmentation analysis for airport access mode choice modeling with mixed logit," Journal of Air Transport Management, Elsevier, vol. 91(C).
    7. Coppola, Pierluigi & De Fabiis, Francesco & Silvestri, Fulvio, 2024. "Urban Air Mobility (UAM): Airport shuttles or city-taxis?," Transport Policy, Elsevier, vol. 150(C), pages 24-34.
    8. Kalakou, Sofia & Moura, Filipe, 2021. "Analyzing passenger behavior in airport terminals based on activity preferences," Journal of Air Transport Management, Elsevier, vol. 96(C).
    9. Avogadro, Nicolò & Birolini, Sebastian & Redondi, Renato & Deforza, Paolo, 2024. "Assessing airport ground access interventions: An integrated approach combining mode choice modeling and microscopic traffic simulation," Transport Policy, Elsevier, vol. 148(C), pages 154-167.
    10. Morlotti, Chiara & Birolini, Sebastian & Malighetti, Paolo & Redondi, Renato, 2023. "A latent class approach to estimate air travelers’ propensity toward connecting itineraries," Research in Transportation Economics, Elsevier, vol. 99(C).
    11. Avogadro, Nicolò & Cattaneo, Mattia & Paleari, Stefano & Redondi, Renato, 2021. "Replacing short-medium haul intra-European flights with high-speed rail: Impact on CO2 emissions and regional accessibility," Transport Policy, Elsevier, vol. 114(C), pages 25-39.
    12. Kinene, Alan & Birolini, Sebastian & Cattaneo, Mattia & Granberg, Tobias Andersson, 2023. "Electric aircraft charging network design for regional routes: A novel mathematical formulation and kernel search heuristic," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1300-1315.
    13. Danica Babić & Milica Kalić & Milan Janić & Slavica Dožić & Katarina Kukić, 2022. "Integrated Door-to-Door Transport Services for Air Passengers: From Intermodality to Multimodality," Sustainability, MDPI, vol. 14(11), pages 1-20, May.
    14. Cordera, Rubén & Luigi dell’Olio, & Sipone, Silvia & Moura, José Luis, 2024. "Modeling airport choice for a multi-airport area using a random parameter logit model," Research in Transportation Economics, Elsevier, vol. 104(C).
    15. Bassam Buhusayen & Pi-Shen Seet & Alan Coetzer, 2020. "Turnaround Management of Airport Service Providers Operating during COVID-19 Restrictions," Sustainability, MDPI, vol. 12(23), pages 1-24, December.
    16. Wadud, Zia, 2020. "An examination of the effects of ride-hailing services on airport parking demand," Journal of Air Transport Management, Elsevier, vol. 84(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    2. Gunay, Gurkan & Gokasar, Ilgin, 2021. "Market segmentation analysis for airport access mode choice modeling with mixed logit," Journal of Air Transport Management, Elsevier, vol. 91(C).
    3. Hess, Stephane, 2007. "Posterior analysis of random taste coefficients in air travel behaviour modelling," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 203-212.
    4. Avogadro, Nicolò & Birolini, Sebastian & Redondi, Renato & Deforza, Paolo, 2024. "Assessing airport ground access interventions: An integrated approach combining mode choice modeling and microscopic traffic simulation," Transport Policy, Elsevier, vol. 148(C), pages 154-167.
    5. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    6. Juan Carlos Martín & Concepción Román & Cira Mendoza, 2018. "Determinants for sun-and-beach self-catering accommodation selection," Tourism Economics, , vol. 24(3), pages 319-336, May.
    7. Campbell, Danny & Hutchinson, W. George & Scarpa, Riccardo, 2006. "Using Discrete Choice Experiments to Derive Individual-Specific WTP Estimates for Landscape Improvements under Agri-Environmental Schemes: Evidence from the Rural Environment Protection Scheme in Irel," Sustainability Indicators and Environmental Valuation Working Papers 12220, Fondazione Eni Enrico Mattei (FEEM).
    8. Zhu, Dianchen & Sze, N.N. & Feng, Zhongxiang & Chan, Ho-Yin, 2023. "Waiting for signalized crossing or walking to footbridge/underpass? Examining the effect of weather using stated choice experiment with panel mixed random regret minimization approach," Transport Policy, Elsevier, vol. 138(C), pages 144-169.
    9. Danny Campbell & W George Hutchinson & Riccardo Scarpa, 2009. "Using Choice Experiments to Explore the Spatial Distribution of Willingness to Pay for Rural Landscape Improvements," Environment and Planning A, , vol. 41(1), pages 97-111, January.
    10. Campbell, Danny & Hutchinson, W. George & Scarpa, Riccardo, 2006. "Lexicographic Preferences in Discrete Choice Experiments: Consequences on Individual-Specific Willingness to Pay Estimates," Sustainability Indicators and Environmental Valuation Working Papers 12224, Fondazione Eni Enrico Mattei (FEEM).
    11. Bergantino, Angela Stefania & Madio, Leonardo, 2017. "High-speed rail, inter-modal substitution and willingness-to-pay. A stated preference analysis for the ‘Bari-Rome’," Working Papers 17_6, SIET Società Italiana di Economia dei Trasporti e della Logistica.
    12. Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
    13. Junyi Shen & Yusuke Sakata & Yoshizo Hashimoto, 2006. "A Comparison between Latent Class Model and Mixed Logit Model for Transport Mode Choice: Evidences from Two Datasets of Japan," Discussion Papers in Economics and Business 06-05, Osaka University, Graduate School of Economics.
    14. Bergantino, Angela Stefania & Capurso, Mauro & Hess, Stephane, 2017. "Modelling regional accessibility towards airports using discrete choice models: an application to the Apulian airport system," Working Papers 17_4, SIET Società Italiana di Economia dei Trasporti e della Logistica.
    15. Marco A. Palma & Dmitry V. Vedenov & David Bessler, 2020. "The order of variables, simulation noise, and accuracy of mixed logit estimates," Empirical Economics, Springer, vol. 58(5), pages 2049-2083, May.
    16. Campbell, Danny & Sinclair, Victoria, 2008. "Mapping preferences for the restoration of environmental damage caused by illegal dumping," 82nd Annual Conference, March 31 - April 2, 2008, Royal Agricultural College, Cirencester, UK 36772, Agricultural Economics Society.
    17. Stephane Hess & John Rose, 2012. "Can scale and coefficient heterogeneity be separated in random coefficients models?," Transportation, Springer, vol. 39(6), pages 1225-1239, November.
    18. Bing Han & Shuang Ren & Jingjing Bao, 2020. "Mixed Logit Model Based on Improved Nonlinear Utility Functions: A Market Shares Solution Method of Different Railway Traffic Modes," Sustainability, MDPI, vol. 12(4), pages 1-25, February.
    19. Campbell, Danny, 2007. "Combining mixed logit models and random effects models to identify the determinants of willingness to pay for rural landscape improvements," 81st Annual Conference, April 2-4, 2007, Reading University, UK 7975, Agricultural Economics Society.
    20. Kalouptsidis, N. & Psaraki, V., 2010. "Approximations of choice probabilities in mixed logit models," European Journal of Operational Research, Elsevier, vol. 200(2), pages 529-535, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:73:y:2019:i:c:p:113-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.