IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/2475.html
   My bibliography  Save this paper

Competition vs. Coordination: Optimising Wind, Solar and Batteries in Renewable Energy Zones

Author

Listed:
  • Simshauser, P.

Abstract

Decarbonising Australia's power system requires high market shares of variable renewable energy. An important policy initiative to achieve this is the establishment of Renewable Energy Zones (REZs). As renewable market share increases, spilled energy within REZs is predictable. Spilled energy occurs due to high peak-to-average output ratios of intermittent renewables (being ~3:1), largely inelastic aggregate final electricity demand, and the economic limits of REZ network transfer capacity. In an open access, multi-zonal market setup, an intuitive response by policymakers may be to undertake connection reform (i.e. priority access) and underwrite storage assets to alleviate the worst effects of spilled energy. Prima facie, spilled energy and lines congestion may be reduced, and wind and solar capacity increased, through the deployment of battery storage. However, as model results in this article reveal, priority access makes multi-zonal markets more sensitive to spilled energy, and competitive batteries within a REZ aggravates congestion. Further, early entrant batteries may oversize their MW capacity and crowd-out renewables. All these cases harm welfare within a REZ. Optimally sized coordinated 'portfolio' batteries alleviate congestion because they don't compete for scarce REZ transfer capacity. Rival batteries should be located outside REZs.

Suggested Citation

  • Simshauser, P., 2024. "Competition vs. Coordination: Optimising Wind, Solar and Batteries in Renewable Energy Zones," Cambridge Working Papers in Economics 2475, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:2475
    as

    Download full text from publisher

    File URL: https://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe2475.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nicholas Gohdes & Paul Simshauser & Clevo Wilson, 2023. "Renewable investments in hybridised energy markets: optimising the CfD-merchant revenue mix," Working Papers EPRG2306, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    2. McConnell, Dylan & Hearps, Patrick & Eales, Dominic & Sandiford, Mike & Dunn, Rebecca & Wright, Matthew & Bateman, Lachlan, 2013. "Retrospective modeling of the merit-order effect on wholesale electricity prices from distributed photovoltaic generation in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 58(C), pages 17-27.
    3. Tim Nelson & Fiona Orton & Tony Chappel, 2018. "Decarbonisation and wholesale electricity market design," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(4), pages 654-675, October.
    4. Forrest, Sam & MacGill, Iain, 2013. "Assessing the impact of wind generation on wholesale prices and generator dispatch in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 120-132.
    5. Newbery, David M. & Biggar, Darryl R., 2024. "Marginal curtailment of wind and solar PV: Transmission constraints, pricing and access regimes for efficient investment," Energy Policy, Elsevier, vol. 191(C).
    6. McDonald, Paul, 2024. "Interrelationships of renewable energy zones in Queensland: localised effects on capacity value and congestion," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 818-833.
    7. Newbery, D., 2023. "High renewable electricity penetration: marginal curtailment and market failure under "subsidy-free" entry," Cambridge Working Papers in Economics 2353, Faculty of Economics, University of Cambridge.
    8. Xiaodong Du and Ofir D. Rubin, 2018. "Transition and Integration of the ERCOT Market with the Competitive Renewable Energy Zones Project," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    9. Simshauser, Paul & Newbery, David, 2024. "Non-firm vs priority access: On the long run average and marginal costs of renewables in Australia," Energy Economics, Elsevier, vol. 136(C).
    10. Newbery, D. & Biggar, D., 2024. "Marginal curtailment of wind and solar PV: transmission constraints, pricing and access regimes for efficient investment," Cambridge Working Papers in Economics 2405, Faculty of Economics, University of Cambridge.
    11. Heesun Jang, 2020. "Market Impacts of a Transmission Investment: Evidence from the ERCOT Competitive Renewable Energy Zones Project," Energies, MDPI, vol. 13(12), pages 1-16, June.
    12. David Newbery & Darryl Biggar, 2024. "Marginal curtailment of wind and solar PV: transmission constraints, pricing and access regimes for efficient investment," Working Papers EPRG2401, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    13. Tracey Dodd & Tim Nelson, 2019. "Trials and tribulations of market responses to climate change: Insight through the transformation of the Australian electricity market," Australian Journal of Management, Australian School of Business, vol. 44(4), pages 614-631, November.
    14. Nelson, Tim & Nelson, James & Ariyaratnam, Jude & Camroux, Simon, 2013. "An analysis of Australia's large scale renewable energy target: Restoring market confidence," Energy Policy, Elsevier, vol. 62(C), pages 386-400.
    15. Newbery, David, 2023. "Wind, water and wires: Evaluating joint wind and interconnector capacity expansions in hydro-rich regions," Energy Economics, Elsevier, vol. 117(C).
    16. James Bushnell & Kevin Novan, 2021. "Setting with the Sun: The Impacts of Renewable Energy on Conventional Generation," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 8(4), pages 759-796.
    17. Newbery, David, 2018. "Shifting demand and supply over time and space to manage intermittent generation: The economics of electrical storage," Energy Policy, Elsevier, vol. 113(C), pages 711-720.
    18. David Newbery, 2023. "High renewable electricity penetration: marginal curtailment and market failure under "subsidy-free" entry," Working Papers EPRG2319, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    19. Alan Rai & Tim Nelson, 2021. "Financing costs and barriers to entry in Australia’s electricity market," Journal of Financial Economic Policy, Emerald Group Publishing Limited, vol. 13(6), pages 730-754, March.
    20. Felder, Frank A., 2011. "Examining Electricity Price Suppression Due to Renewable Resources and Other Grid Investments," The Electricity Journal, Elsevier, vol. 24(4), pages 34-46, May.
    21. Schelly, Chelsea, 2014. "Implementing renewable energy portfolio standards: The good, the bad, and the ugly in a two state comparison," Energy Policy, Elsevier, vol. 67(C), pages 543-551.
    22. Farhad Billimoria & Paul Simshauser, 2023. "Contract design for storage in hybrid electricity markets," Working Papers EPRG2304, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    23. Simshauser, Paul, 2021. "Renewable Energy Zones in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 101(C).
    24. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    25. Gohdes, Nicholas & Simshauser, Paul & Wilson, Clevo, 2023. "Renewable investments, hybridised markets and the energy crisis: Optimising the CfD-merchant revenue mix," Energy Economics, Elsevier, vol. 125(C).
    26. Fabra, Natalia, 2023. "Reforming European electricity markets: Lessons from the energy crisis," Energy Economics, Elsevier, vol. 126(C).
    27. David Newbery, 2023. "Efficient Renewable Electricity Support: Designing an Incentive-compatible Support Scheme," The Energy Journal, , vol. 44(3), pages 1-22, May.
    28. Flottmann, Jonty, 2024. "Australian energy policy decisions in the wake of the 2022 energy crisis," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 238-248.
    29. Cludius, Johanna & Forrest, Sam & MacGill, Iain, 2014. "Distributional effects of the Australian Renewable Energy Target (RET) through wholesale and retail electricity price impacts," Energy Policy, Elsevier, vol. 71(C), pages 40-51.
    30. Antweiler, Werner & Muesgens, Felix, 2021. "On the long-term merit order effect of renewable energies," Energy Economics, Elsevier, vol. 99(C).
    31. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    32. Tim Nelson & Tahlia Nolan & Joel Gilmore, 2022. "What’s next for the Renewable Energy Target – resolving Australia’s integration of energy and climate change policy?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(1), pages 136-163, January.
    33. Hassanzadeh Moghimi, Farzad & Boomsma, Trine K. & Siddiqui, Afzal S., 2024. "Transmission planning in an imperfectly competitive power sector with environmental externalities," Energy Economics, Elsevier, vol. 134(C).
    34. David Newbery, 2023. "Efficient Renewable Electricity Support: Designing an Incentive-compatible Support Scheme," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    35. Tim Nelson, 2015. "Australian Climate Change Policy – Where To From Here?," Economic Papers, The Economic Society of Australia, vol. 34(4), pages 257-272, December.
    36. McDonald, Paul, 2023. "Locational and market value of Renewable Energy Zones in Queensland," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 198-213.
    37. Newbery, David M., 2023. "High renewable electricity penetration: Marginal curtailment and market failure under “subsidy-free” entry," Energy Economics, Elsevier, vol. 126(C).
    38. Rai, Alan & Nunn, Oliver, 2020. "On the impact of increasing penetration of variable renewables on electricity spot price extremes in Australia," Economic Analysis and Policy, Elsevier, vol. 67(C), pages 67-86.
    39. Alan Rai & Tim Nelson, 2020. "Australia's National Electricity Market after Twenty Years," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 53(2), pages 165-182, June.
    40. Gohdes, Nicholas, 2023. "Unhedged risk in hybrid energy markets: Optimising the revenue mix of Australian solar," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1363-1380.
    41. James Hyungkwan Kim & Mark Bolinger & Andrew D. Mills & Ryan Wiser, 2023. "Rethinking the Role of Financial Transmission Rights in Wind-Rich Electricity Markets in the Central U.S," The Energy Journal, , vol. 44(6), pages 1-20, November.
    42. Clapin, Lachlan & Longden, Thomas, 2024. "Waiting to generate: An analysis of onshore wind and solar PV project development lead-times in Australia," Energy Economics, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simshauser, Paul & Newbery, David, 2024. "Non-firm vs priority access: On the long run average and marginal costs of renewables in Australia," Energy Economics, Elsevier, vol. 136(C).
    2. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    3. Simshauser, P. & Gohde, N., 2024. "3-Party Covenant Financing of 'Semi-Regulated' Pumped Hydro Assets," Cambridge Working Papers in Economics 2425, Faculty of Economics, University of Cambridge.
    4. Gohdes, N.Nicholas & Simshauser,P. & Wilson, C., 2023. "Renewable investments in hybridised energy markets: optimising the CfD-merchant revenue mix," Cambridge Working Papers in Economics 2334, Faculty of Economics, University of Cambridge.
    5. Gohdes, Nicholas & Simshauser, Paul & Wilson, Clevo, 2023. "Renewable investments, hybridised markets and the energy crisis: Optimising the CfD-merchant revenue mix," Energy Economics, Elsevier, vol. 125(C).
    6. Qiao, Qiao & Zeng, Xianhai & Lin, Boqiang, 2024. "Mitigating wind curtailment risk in China: The impact of subsidy reduction policy," Applied Energy, Elsevier, vol. 368(C).
    7. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    8. Gohdes, Nicholas, 2023. "Unhedged risk in hybrid energy markets: Optimising the revenue mix of Australian solar," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1363-1380.
    9. Nelson, Tim & Rai, Alan & Esplin, Ryan, 2021. "Overcoming the limitations of variable renewable production subsidies as a means of decarbonising electricity markets," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 544-556.
    10. Tim Nelson & Tahlia Nolan & Joel Gilmore, 2022. "What’s next for the Renewable Energy Target – resolving Australia’s integration of energy and climate change policy?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(1), pages 136-163, January.
    11. Veenstra, Arjen T. & Mulder, Machiel, 2024. "Impact of Contracts for Differences for non-carbon electricity generation on efficiency of electricity market," Energy Economics, Elsevier, vol. 136(C).
    12. Bell, William Paul & Wild, Phillip & Foster, John & Hewson, Michael, 2017. "Revitalising the wind power induced merit order effect to reduce wholesale and retail electricity prices in Australia," Energy Economics, Elsevier, vol. 67(C), pages 224-241.
    13. Davi-Arderius, D. & Jamasb, T., 2024. "Measuring a Paradox: Zero-Negative Electricity Prices," Cambridge Working Papers in Economics 2451, Faculty of Economics, University of Cambridge.
    14. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Rai, Alan & Konstandatos, Otto, 2022. "Large-scale and rooftop solar generation in the NEM: A tale of two renewables strategies," Energy Economics, Elsevier, vol. 115(C).
    15. Simshauser, Paul, 2018. "Garbage can theory and Australia's National Electricity Market: Decarbonisation in a hostile policy environment," Energy Policy, Elsevier, vol. 120(C), pages 697-713.
    16. Milstein, I. & Tishler, A. & Woo, C.K., 2024. "The effect of PV generation's hourly variations on Israel's solar investment," Energy Economics, Elsevier, vol. 136(C).
    17. McDonald, Paul, 2023. "Locational and market value of Renewable Energy Zones in Queensland," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 198-213.
    18. Simshauser, Paul & Gilmore, Joel, 2022. "Climate change policy discontinuity & Australia's 2016-2021 renewable investment supercycle," Energy Policy, Elsevier, vol. 160(C).
    19. Simshauser, Paul, 2019. "Missing money, missing policy and Resource Adequacy in Australia's National Electricity Market," Utilities Policy, Elsevier, vol. 60(C), pages 1-1.
    20. Ricardo Gonçalves & Flávio Menezes, 2022. "Market‐wide impact of renewables on electricity prices in Australia," The Economic Record, The Economic Society of Australia, vol. 98(320), pages 1-21, March.

    More about this item

    Keywords

    Renewable Energy Zones; Renewables; Spilled Energy; Marginal Curtailment; Battery Storage;
    All these keywords.

    JEL classification:

    • D52 - Microeconomics - - General Equilibrium and Disequilibrium - - - Incomplete Markets
    • D53 - Microeconomics - - General Equilibrium and Disequilibrium - - - Financial Markets
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:2475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.