IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej39-4-rubin.html
   My bibliography  Save this article

Transition and Integration of the ERCOT Market with the Competitive Renewable Energy Zones Project

Author

Listed:
  • Xiaodong Du and Ofir D. Rubin

Abstract

In this study, we seek to explore the impact of a state level transmission expansion project, the Competitive Renewable Energy Zones (CREZ), whose goal is to integrate a massive amount of wind energy, on the wholesale market prices in the Electric Reliability Council of Texas (ERCOT). We find strong evidence for price convergence across ERCOT with accordance to the timing of the expansion of major sections of the CREZ. A variety of empirical analyses shows a gradual transition to a well-integrated market. We also find that regional-specific shocks became more important in terms of driving price change in other regions. Specifically, the impacts of Houston (demand) and the West (wind supply) on each other and the North and South regions have increased significantly. Our study contributes to the literature by connecting the expansion of physical transmission lines with electricity market integration.

Suggested Citation

  • Xiaodong Du and Ofir D. Rubin, 2018. "Transition and Integration of the ERCOT Market with the Competitive Renewable Energy Zones Project," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
  • Handle: RePEc:aen:journl:ej39-4-rubin
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=3109
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Severin Borenstein & James. Bushnell & Steven Stoft, 2000. "The Competitive Effects of Transmission Capacity in A Deregulated Electricity Industry," RAND Journal of Economics, The RAND Corporation, vol. 31(2), pages 294-325, Summer.
    2. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    2. Simshauser, Paul & Newbery, David, 2024. "Non-firm vs priority access: On the long run average and marginal costs of renewables in Australia," Energy Economics, Elsevier, vol. 136(C).
    3. McDonald, Paul, 2024. "Interrelationships of renewable energy zones in Queensland: localised effects on capacity value and congestion," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 818-833.
    4. Heesun Jang, 2020. "Market Impacts of a Transmission Investment: Evidence from the ERCOT Competitive Renewable Energy Zones Project," Energies, MDPI, vol. 13(12), pages 1-16, June.
    5. Simshauser, P. & Gohde, N., 2024. "3-Party Covenant Financing of 'Semi-Regulated' Pumped Hydro Assets," Cambridge Working Papers in Economics 2425, Faculty of Economics, University of Cambridge.
    6. McDonald, Paul, 2023. "Locational and market value of Renewable Energy Zones in Queensland," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 198-213.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hillebrand, Eric & Schnabl, Gunther & Ulu, Yasemin, 2009. "Japanese foreign exchange intervention and the yen-to-dollar exchange rate: A simultaneous equations approach using realized volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 490-505, July.
    2. Moore, J. & Woo, C.K. & Horii, B. & Price, S. & Olson, A., 2010. "Estimating the option value of a non-firm electricity tariff," Energy, Elsevier, vol. 35(4), pages 1609-1614.
    3. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    4. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    5. N. Antonakakis & J. Darby, 2013. "Forecasting volatility in developing countries' nominal exchange returns," Applied Financial Economics, Taylor & Francis Journals, vol. 23(21), pages 1675-1691, November.
    6. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    7. Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.
    8. Woerner Jeannette H. C., 2003. "Variational sums and power variation: a unifying approach to model selection and estimation in semimartingale models," Statistics & Risk Modeling, De Gruyter, vol. 21(1), pages 47-68, January.
    9. Grace Lee Ching Yap, 2020. "Optimal Filter Approximations for Latent Long Memory Stochastic Volatility," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 547-568, August.
    10. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    11. Yilun Zhang & Yuping Song & Ying Peng & Hanchao Wang, 2024. "Volatility forecasting incorporating intraday positive and negative jumps based on deep learning model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2749-2765, November.
    12. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    13. Kousik Guhathakurta & Sharad Nath Bhattacharya & Mousumi Bhattacharya, 2012. "Exploring Presence of Long Memory in Emerging and Developed Stock Markets," Working papers 107, Indian Institute of Management Kozhikode.
    14. Karsten Neuhoff, 2002. "Optimal congestion treatment for bilateral electricity trading," Working Papers EP05, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    15. Manabu Asai & Rangan Gupta & Michael McAleer, 2019. "The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures," Energies, MDPI, vol. 12(17), pages 1-17, September.
    16. Hooper, Vincent J. & Ng, Kevin & Reeves, Jonathan J., 2008. "Quarterly beta forecasting: An evaluation," International Journal of Forecasting, Elsevier, vol. 24(3), pages 480-489.
    17. Jian Yao & Ilan Adler & Shmuel S. Oren, 2008. "Modeling and Computing Two-Settlement Oligopolistic Equilibrium in a Congested Electricity Network," Operations Research, INFORMS, vol. 56(1), pages 34-47, February.
    18. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Post-Print halshs-02505861, HAL.
    19. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
    20. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej39-4-rubin. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.