IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v191y2024ics030142152400226x.html
   My bibliography  Save this article

Marginal curtailment of wind and solar PV: Transmission constraints, pricing and access regimes for efficient investment

Author

Listed:
  • Newbery, David M.
  • Biggar, Darryl R.

Abstract

As Variable Renewable Energy (VRE) penetration increases in poorly networked areas with suitable VRE resources, transmission constraints will increasingly force VRE curtailment. Under most European market access and pricing arrangements, location and operation decisions are based on average curtailment rates. As the marginal contribution of the last MW of VRE is 3+ times average curtailment, there is a risk of inefficient location and operation. This article compares different pricing and access regimes (including nodal pricing) to compare their impact on the incentives for VRE merchant or market driven entry.

Suggested Citation

  • Newbery, David M. & Biggar, Darryl R., 2024. "Marginal curtailment of wind and solar PV: Transmission constraints, pricing and access regimes for efficient investment," Energy Policy, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:enepol:v:191:y:2024:i:c:s030142152400226x
    DOI: 10.1016/j.enpol.2024.114206
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142152400226X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2024.114206?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gohdes, N. & Simshauser, P., 2022. "Renewable entry costs, project finance and the role of revenue quality in Australia’s National Electricity Market," Cambridge Working Papers in Economics 2206, Faculty of Economics, University of Cambridge.
    2. Eicke, Anselm & Khanna, Tarun & Hirth, Lion, 2020. "Locational investment signals - How to steer the siting of new generation capacity in power systems?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 41(6), pages 281-304.
    3. David M. Newbery, 2012. "Reforming Competitive Electricity Markets to Meet Environmental Targets," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    4. Hongyun Zhang & Michael G. Pollitt, 2023. "Comparison of policy instruments in the development process of offshore wind power in North Sea countries," Working Papers EPRG2323, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    5. Simshauser, Paul & Newbery, David, 2024. "Non-firm vs priority access: On the long run average and marginal costs of renewables in Australia," Energy Economics, Elsevier, vol. 136(C).
    6. Flottmann, Jonty H. & Akimov, Alexandr & Simshauser, Paul, 2022. "Firming merchant renewable generators in Australia’s National Electricity Market," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 262-276.
    7. Gohdes, Nicholas & Simshauser, Paul & Wilson, Clevo, 2022. "Renewable entry costs, project finance and the role of revenue quality in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 114(C).
    8. David Newbery, 2023. "Regulation of access, fees, and investment planning of transmission in Great Britain," Working Papers EPRG2307, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    9. Novan, Kevin & Wang, Yingzi, 2024. "Estimates of the marginal curtailment rates for solar and wind generation," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    10. Anselm Eicke & Tarun Khanna & Lion Hirth, 2020. "Locational Investment Signals: How to Steer the Siting of New Generation Capacity in Power Systems?," The Energy Journal, , vol. 41(6), pages 281-304, November.
    11. Zhang, Xian & Wang, Jia-Xing & Cao, Zhe & Shen, Shuo & Meng, Shuo & Fan, Jing-Li, 2021. "What is driving the remarkable decline of wind and solar power curtailment in China? Evidence from China and four typical provinces," Renewable Energy, Elsevier, vol. 174(C), pages 31-42.
    12. Aldersey-Williams, John & Broadbent, Ian D. & Strachan, Peter A., 2020. "Analysis of United Kingdom offshore wind farm performance using public data: Improving the evidence base for policymaking," Utilities Policy, Elsevier, vol. 62(C).
    13. Wang, Sarah & Tarroja, Brian & Schell, Lori Smith & Samuelsen, Scott, 2021. "Determining cost-optimal approaches for managing excess renewable electricity in decarbonized electricity systems," Renewable Energy, Elsevier, vol. 178(C), pages 1187-1197.
    14. O'Shaughnessy, Eric & Cruce, Jesse & Xu, Kaifeng, 2021. "Rethinking solar PV contracts in a world of increasing curtailment risk," Energy Economics, Elsevier, vol. 98(C).
    15. Joel Gilmore & Tim Nelson & Tahlia Nolan, 2023. "Firming Technologies to Reach 100% Renewable Energy Production in Australia’s National Electricity Market (NEM)," The Energy Journal, , vol. 44(6), pages 189-210, November.
    16. Newbery, D., 2023. "Regulation of access, fees, and investment planning of transmission in Great Britain," Cambridge Working Papers in Economics 2335, Faculty of Economics, University of Cambridge.
    17. Song, Jeonghun & Oh, Si-Doek & Yoo, Yungpil & Seo, Seok-Ho & Paek, Insu & Song, Yuan & Song, Seung Jin, 2018. "System design and policy suggestion for reducing electricity curtailment in renewable power systems for remote islands," Applied Energy, Elsevier, vol. 225(C), pages 195-208.
    18. Bird, Lori & Lew, Debra & Milligan, Michael & Carlini, E. Maria & Estanqueiro, Ana & Flynn, Damian & Gomez-Lazaro, Emilio & Holttinen, Hannele & Menemenlis, Nickie & Orths, Antje & Eriksen, Peter Børr, 2016. "Wind and solar energy curtailment: A review of international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 577-586.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Holmberg, Pär, 2024. "The Inc-Dec Game and How to Mitigate It," Working Paper Series 1512, Research Institute of Industrial Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simshauser, Paul & Newbery, David, 2024. "Non-firm vs priority access: On the long run average and marginal costs of renewables in Australia," Energy Economics, Elsevier, vol. 136(C).
    2. Simshauser, P., 2023. "The regulation of electricity transmission in Australia's National Electricity Market: user charges, investment and access," Cambridge Working Papers in Economics 2340, Faculty of Economics, University of Cambridge.
    3. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    4. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan MacA., 2024. "Techno-economics of renewable hydrogen export: A case study for Australia-Japan," Applied Energy, Elsevier, vol. 374(C).
    5. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    6. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan Mac A., 2024. "Techno-economics of offshore wind-based dynamic hydrogen production," Applied Energy, Elsevier, vol. 374(C).
    7. Simshauser, Paul, 2021. "Renewable Energy Zones in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 101(C).
    8. Simshauser, Paul & Billimoria, Farhad & Rogers, Craig, 2022. "Optimising VRE capacity in Renewable Energy Zones," Energy Economics, Elsevier, vol. 113(C).
    9. Kim, James Hyungkwan & Millstein, Dev & Wiser, Ryan & Mulvaney-Kemp, Julie, 2024. "Renewable-battery hybrid power plants in congested electricity markets: Implications for plant configuration," Renewable Energy, Elsevier, vol. 232(C).
    10. Gohdes, Nicholas & Simshauser, Paul & Wilson, Clevo, 2023. "Renewable investments, hybridised markets and the energy crisis: Optimising the CfD-merchant revenue mix," Energy Economics, Elsevier, vol. 125(C).
    11. Rangarajan, Arvind & Foley, Sean & Trück, Stefan, 2023. "Assessing the impact of battery storage on Australian electricity markets," Energy Economics, Elsevier, vol. 120(C).
    12. Milstein, I. & Tishler, A. & Woo, C.K., 2024. "The effect of PV generation's hourly variations on Israel's solar investment," Energy Economics, Elsevier, vol. 136(C).
    13. Flottmann, Jonty H. & Akimov, Alexandr & Simshauser, Paul, 2022. "Firming merchant renewable generators in Australia’s National Electricity Market," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 262-276.
    14. Newbery, David M., 2023. "High renewable electricity penetration: Marginal curtailment and market failure under “subsidy-free” entry," Energy Economics, Elsevier, vol. 126(C).
    15. Kang Hua Cao & Han Qi & Chi-Keung Woo & Jay Zarnikau & Raymond Li, 2024. "Efficient Frontiers for Short-term Sales of Spot and Forward Wind Energy in Texas," The Energy Journal, , vol. 45(6), pages 37-60, November.
    16. K. H. Cao & H. Qi & C. K. Woo & J. Zarnikau & R. Li, 2024. "Efficient frontiers for short-term sales of spot and forward wind energy in Texas," Post-Print hal-04761181, HAL.
    17. Gohdes, Nicholas, 2023. "Unhedged risk in hybrid energy markets: Optimising the revenue mix of Australian solar," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1363-1380.
    18. Holmberg, Pär, 2024. "The Inc-Dec Game and How to Mitigate It," Working Paper Series 1512, Research Institute of Industrial Economics.
    19. Veenstra, Arjen T. & Mulder, Machiel, 2024. "Impact of Contracts for Differences for non-carbon electricity generation on efficiency of electricity market," Energy Economics, Elsevier, vol. 136(C).
    20. Li, Jianling & Zhao, Ziwen & Xu, Dan & Li, Peiquan & Liu, Yong & Mahmud, Md Apel & Chen, Diyi, 2023. "The potential assessment of pump hydro energy storage to reduce renewable curtailment and CO2 emissions in Northwest China," Renewable Energy, Elsevier, vol. 212(C), pages 82-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:191:y:2024:i:c:s030142152400226x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.