IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/3536.html
   My bibliography  Save this paper

Extreme risk in Asian equity markets

Author

Listed:
  • Cotter, John

Abstract

Extreme price movements associated with tail returns are catastrophic for all investors and it is necessary to make accurate predictions of the severity of these events. Choosing a time frame associated with large financial booms and crises this paper investigates the tail behaviour of Asian equity market returns and quantifies two risk measures, quantiles and average losses, along with their associated average waiting periods. Extreme value theory using the Peaks over Threshold method generates the risk measures where tail returns are modelled with a fat-tailed Generalised Pareto Distribution. We find that lower tail risk measures are more severe than upper tail realisations at the lowest probability levels. Moreover, the Kuala Lumpar Composite exhibits the largest risk measures.

Suggested Citation

  • Cotter, John, 2007. "Extreme risk in Asian equity markets," MPRA Paper 3536, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:3536
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/3536/1/MPRA_paper_3536.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cotter, John & Dowd, Kevin, 2006. "Extreme spectral risk measures: An application to futures clearinghouse margin requirements," Journal of Banking & Finance, Elsevier, vol. 30(12), pages 3469-3485, December.
    2. Koedijk, Kees G & Kool, Clemens J M, 1994. "Tail Estimates and the EMS Target Zone," Review of International Economics, Wiley Blackwell, vol. 2(2), pages 153-165, June.
    3. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    4. Cotter, John, 2001. "Margin exceedences for European stock index futures using extreme value theory," Journal of Banking & Finance, Elsevier, vol. 25(8), pages 1475-1502, August.
    5. Longin, Francois M, 1996. "The Asymptotic Distribution of Extreme Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 69(3), pages 383-408, July.
    6. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hussain, Saiful Izzuan & Li, Steven, 2015. "Modeling the distribution of extreme returns in the Chinese stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 34(C), pages 263-276.
    2. Saša ŽIKOVIÆ & Randall K. FILER, 2013. "Ranking of VaR and ES Models: Performance in Developed and Emerging Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(4), pages 327-359, August.
    3. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    4. Sasa Zikovic & Randall Filer, 2009. "Hybrid Historical Simulation VaR and ES: Performance in Developed and Emerging Markets," CESifo Working Paper Series 2820, CESifo.
    5. Julija Cerović & Vesna Karadžić, 2015. "Extreme Value Theory In Emerging Markets: Evidence From Montenegrin Stock Exchange," Economic Annals, Faculty of Economics and Business, University of Belgrade, vol. 60(206), pages 87-116, July - Se.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    2. Yun Feng & Weijie Hou & Yuping Song, 2024. "Tail risk forecasting and its application to margin requirements in the commodity futures market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1513-1529, August.
    3. Cotter, John & Dowd, Kevin, 2006. "Extreme spectral risk measures: An application to futures clearinghouse margin requirements," Journal of Banking & Finance, Elsevier, vol. 30(12), pages 3469-3485, December.
    4. Cotter, John & Dowd, Kevin, 2006. "Spectral Risk Measures with an Application to Futures Clearinghouse Variation Margin Requirements," MPRA Paper 3495, University Library of Munich, Germany.
    5. Robert A. Jones & Christophe Pérignon, 2013. "Derivatives Clearing, Default Risk, and Insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(2), pages 373-400, June.
    6. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
    7. Winter, Peter, 2007. "Managerial Risk Accounting and Control – A German perspective," MPRA Paper 8185, University Library of Munich, Germany.
    8. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    9. Nan Zhang & Heng Xu, 2024. "Fairness of Ratemaking for Catastrophe Insurance: Lessons from Machine Learning," Information Systems Research, INFORMS, vol. 35(2), pages 469-488, June.
    10. Eugene N. Gurenko & Alexander Itigin, 2009. "Solvency Measures for Insurance Companies : Is There a Room for Improvement?," World Bank Publications - Reports 12831, The World Bank Group.
    11. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
    12. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
    13. Wentao Hu & Cuixia Chen & Yufeng Shi & Ze Chen, 2022. "A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 831-874, June.
    14. Stelios Bekiros & Nikolaos Loukeris & Iordanis Eleftheriadis & Christos Avdoulas, 2019. "Tail-Related Risk Measurement and Forecasting in Equity Markets," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 783-816, February.
    15. Kajtazi, Anton & Moro, Andrea, 2019. "The role of bitcoin in well diversified portfolios: A comparative global study," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 143-157.
    16. Thilini Mahanama & Abootaleb Shirvani & Svetlozar Rachev, 2022. "A Natural Disasters Index," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(2), pages 263-284, April.
    17. John Cotter & Kevin Dowd, 2010. "Estimating financial risk measures for futures positions: A nonparametric approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(7), pages 689-703, July.
    18. Cotter, John, 2007. "Varying the VaR for unconditional and conditional environments," Journal of International Money and Finance, Elsevier, vol. 26(8), pages 1338-1354, December.
    19. Tiantian Li & Young Shin Kim & Qi Fan & Fumin Zhu, 2021. "Aumann–Serrano index of risk in portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 197-217, October.
    20. Castro, Cesar D., 2015. "Riesgo sistémico en el sistema financiero peruano," Revista Estudios Económicos, Banco Central de Reserva del Perú, issue 29, pages 77-90.

    More about this item

    JEL classification:

    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G1 - Financial Economics - - General Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:3536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.