IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.00151.html
   My bibliography  Save this paper

A Comprehensive Review: Applicability of Deep Neural Networks in Business Decision Making and Market Prediction Investment

Author

Listed:
  • Viet Trinh

Abstract

Big data, both in its structured and unstructured formats, have brought in unforeseen challenges in economics and business. How to organize, classify, and then analyze such data to obtain meaningful insights are the ever-going research topics for business leaders and academic researchers. This paper studies recent applications of deep neural networks in decision making in economical business and investment; especially in risk management, portfolio optimization, and algorithmic trading. Set aside limitation in data privacy and cross-market analysis, the article establishes that deep neural networks have performed remarkably in financial classification and prediction. Moreover, the study suggests that by compositing multiple neural networks, spanning different data type modalities, a more robust, efficient, and scalable financial prediction framework can be constructed.

Suggested Citation

  • Viet Trinh, 2025. "A Comprehensive Review: Applicability of Deep Neural Networks in Business Decision Making and Market Prediction Investment," Papers 2502.00151, arXiv.org.
  • Handle: RePEc:arx:papers:2502.00151
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.00151
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.00151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.