IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v369y2024ics030626192400936x.html
   My bibliography  Save this article

Day-ahead electricity price prediction in multi-price zones based on multi-view fusion spatio-temporal graph neural network

Author

Listed:
  • Meng, Anbo
  • Zhu, Jianbin
  • Yan, Baiping
  • Yin, Hao

Abstract

Factors such as high penetration of renewable energy, load, geographic location, and interactions between price zones make accurate electricity price forecasting (EPF) very challenging, especially day-ahead electricity price forecasting (DAEPF). To address the issue, A spatio-temporal graph neural network prediction model based on multi-view fusion is proposed in this paper, which learns and analyzes distance relationships, price correlations, and similarities in price distributions across multiple regions, four kinds of graph matrix are constructed to represent the complex spatio-temporal interaction in electricity market. To realize information aggregation between multiple perspectives, a novel multi-view fusion module (MVF) is proposed, which actively mines and utilizes the correlation between nodes within the graph and nodes across the graph through spatial attention and graph attention mechanism, and a temporal embedding module is proposed. The temporal information between nodes is represented by multi-head temporal attention mechanism and the time dependence of multiple receptive fields is obtained by multi-scale gated convolution. Massive experiments are conducted on multiple price zones in the European power market with a high proportion of new energy sources. The results show that MVF can effectively integrate multiple scenario information and improve the prediction accuracy of the network, and the proposed combined network has significant advantages over other models involved in this study.

Suggested Citation

  • Meng, Anbo & Zhu, Jianbin & Yan, Baiping & Yin, Hao, 2024. "Day-ahead electricity price prediction in multi-price zones based on multi-view fusion spatio-temporal graph neural network," Applied Energy, Elsevier, vol. 369(C).
  • Handle: RePEc:eee:appene:v:369:y:2024:i:c:s030626192400936x
    DOI: 10.1016/j.apenergy.2024.123553
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192400936X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Xin & Qiu, Jing & Lei, Gang & Zhu, Jianguo, 2022. "Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia," Applied Energy, Elsevier, vol. 308(C).
    2. Hirth, Lion & Mühlenpfordt, Jonathan & Bulkeley, Marisa, 2018. "The ENTSO-E Transparency Platform – A review of Europe’s most ambitious electricity data platform," Applied Energy, Elsevier, vol. 225(C), pages 1054-1067.
    3. Lehna, Malte & Scheller, Fabian & Herwartz, Helmut, 2022. "Forecasting day-ahead electricity prices: A comparison of time series and neural network models taking external regressors into account," Energy Economics, Elsevier, vol. 106(C).
    4. Li, Wei & Becker, Denis Mike, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Energy, Elsevier, vol. 237(C).
    5. Bangzhu Zhu & Xuetao Shi & Julien Chevallier & Ping Wang & Yi‐Ming Wei, 2016. "An Adaptive Multiscale Ensemble Learning Paradigm for Nonstationary and Nonlinear Energy Price Time Series Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 633-651, November.
    6. Cornell, Cameron & Dinh, Nam Trong & Pourmousavi, S. Ali, 2024. "A probabilistic forecast methodology for volatile electricity prices in the Australian National Electricity Market," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1421-1437.
    7. Papadimitriou, Theophilos & Gogas, Periklis & Stathakis, Efthimios, 2014. "Forecasting energy markets using support vector machines," Energy Economics, Elsevier, vol. 44(C), pages 135-142.
    8. Alasseur, C. & Féron, O., 2018. "Structural price model for coupled electricity markets," Energy Economics, Elsevier, vol. 75(C), pages 104-119.
    9. Xiong, Xiaoping & Qing, Guohua, 2023. "A hybrid day-ahead electricity price forecasting framework based on time series," Energy, Elsevier, vol. 264(C).
    10. Pircalabu, A. & Benth, F.E., 2017. "A regime-switching copula approach to modeling day-ahead prices in coupled electricity markets," Energy Economics, Elsevier, vol. 68(C), pages 283-302.
    11. Wang, Shun & Zhang, Yong & Hu, Yongli & Yin, Baocai, 2023. "Knowledge fusion enhanced graph neural network for traffic flow prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    12. Bruno Bosco & Lucia Parisio & Matteo Pelagatti & Fabio Baldi, 2010. "Long-run relations in european electricity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 805-832.
    13. Sai, Wei & Pan, Zehua & Liu, Siyu & Jiao, Zhenjun & Zhong, Zheng & Miao, Bin & Chan, Siew Hwa, 2023. "Event-driven forecasting of wholesale electricity price and frequency regulation price using machine learning algorithms," Applied Energy, Elsevier, vol. 352(C).
    14. Uribe, Jorge M. & Mosquera-López, Stephanía & Guillen, Montserrat, 2020. "Characterizing electricity market integration in Nord Pool," Energy, Elsevier, vol. 208(C).
    15. Hugo Morais & Tiago Pinto & Zita Vale, 2020. "Adjacent Markets Influence Over Electricity Trading—Iberian Benchmark Study," Energies, MDPI, vol. 13(11), pages 1-22, June.
    16. Wei Li & Denis Mike Becker, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Papers 2101.05249, arXiv.org, revised Jul 2021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Tao & Li, Chongyang & Zhang, Wei & Zhang, Yi, 2023. "Forecasting on metal resource spot settlement price: New evidence from the machine learning model," Resources Policy, Elsevier, vol. 81(C).
    2. Haokun Su & Xiangang Peng & Hanyu Liu & Huan Quan & Kaitong Wu & Zhiwen Chen, 2022. "Multi-Step-Ahead Electricity Price Forecasting Based on Temporal Graph Convolutional Network," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
    3. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2024. "Two-step deep learning framework with error compensation technique for short-term, half-hourly electricity price forecasting," Applied Energy, Elsevier, vol. 353(PA).
    4. Adela Bâra & Simona-Vasilica Oprea & Bogdan George Tudorică, 2024. "From the East-European Regional Day-Ahead Markets to a Global Electricity Market," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2525-2557, June.
    5. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & Jesus Lopez-Sotelo & David Celeita, 2023. "An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture," Energies, MDPI, vol. 16(19), pages 1-24, September.
    6. Dounia El Bourakadi & Hiba Ramadan & Ali Yahyaouy & Jaouad Boumhidi, 2023. "A robust energy management approach in two-steps ahead using deep learning BiLSTM prediction model and type-2 fuzzy decision-making controller," Fuzzy Optimization and Decision Making, Springer, vol. 22(4), pages 645-667, December.
    7. Schneider, Nicolas & Strielkowski, Wadim, 2023. "Modelling the unit root properties of electricity data—A general note on time-domain applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    8. Daniel Manfre Jaimes & Manuel Zamudio López & Hamidreza Zareipour & Mike Quashie, 2023. "A Hybrid Model for Multi-Day-Ahead Electricity Price Forecasting considering Price Spikes," Forecasting, MDPI, vol. 5(3), pages 1-23, July.
    9. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    10. Souhir Ben Amor & Thomas Mobius & Felix Musgens, 2024. "Bridging an energy system model with an ensemble deep-learning approach for electricity price forecasting," Papers 2411.04880, arXiv.org.
    11. Meng, Anbo & Wang, Peng & Zhai, Guangsong & Zeng, Cong & Chen, Shun & Yang, Xiaoyi & Yin, Hao, 2022. "Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization," Energy, Elsevier, vol. 254(PA).
    12. Gonçalves, Rui & Ribeiro, Vitor Miguel & Pereira, Fernando Lobo, 2023. "Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption," Energy, Elsevier, vol. 274(C).
    13. Mahler, Valentin & Girard, Robin & Kariniotakis, Georges, 2022. "Data-driven structural modeling of electricity price dynamics," Energy Economics, Elsevier, vol. 107(C).
    14. Tovar Rosas, Mario A. & Pérez, Miguel Robles & Martínez Pérez, E. Rafael, 2022. "Itineraries for charging and discharging a BESS using energy predictions based on a CNN-LSTM neural network model in BCS, Mexico," Renewable Energy, Elsevier, vol. 188(C), pages 1141-1165.
    15. Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
    16. Sharma, Abhishek & Jain, Sachin Kumar, 2022. "A novel seasonal segmentation approach for day-ahead load forecasting," Energy, Elsevier, vol. 257(C).
    17. Kılıç Depren, Serpil & Kartal, Mustafa Tevfik & Ertuğrul, Hasan Murat & Depren, Özer, 2022. "The role of data frequency and method selection in electricity price estimation: Comparative evidence from Turkey in pre-pandemic and pandemic periods," Renewable Energy, Elsevier, vol. 186(C), pages 217-225.
    18. Godin, Frédéric & Ibrahim, Zinatu, 2021. "An analysis of electricity congestion price patterns in North America," Energy Economics, Elsevier, vol. 102(C).
    19. Wei Li & Wolfgang Karl Hardle & Stefan Lessmann, 2022. "A Data-driven Case-based Reasoning in Bankruptcy Prediction," Papers 2211.00921, arXiv.org.
    20. Bikeri Adline & Kazushi Ikeda, 2023. "A Hawkes Model Approach to Modeling Price Spikes in the Japanese Electricity Market," Energies, MDPI, vol. 16(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:369:y:2024:i:c:s030626192400936x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.