IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.13136.html
   My bibliography  Save this paper

Forecasting of Bitcoin Prices Using Hashrate Features: Wavelet and Deep Stacking Approach

Author

Listed:
  • Ramin Mousa
  • Meysam Afrookhteh
  • Hooman Khaloo
  • Amir Ali Bengari
  • Gholamreza Heidary

Abstract

Digital currencies have become popular in the last decade due to their non-dependency and decentralized nature. The price of these currencies has seen a lot of fluctuations at times, which has increased the need for prediction. As their most popular, Bitcoin(BTC) has become a research hotspot. The main challenge and trend of digital currencies, especially BTC, is price fluctuations, which require studying the basic price prediction model. This research presents a classification and regression model based on stack deep learning that uses a wavelet to remove noise to predict movements and prices of BTC at different time intervals. The proposed model based on the stacking technique uses models based on deep learning, especially neural networks and transformers, for one, seven, thirty and ninety-day forecasting. Three feature selection models, Chi2, RFE and Embedded, were also applied to the data in the pre-processing stage. The classification model achieved 63\% accuracy for predicting the next day and 64\%, 67\% and 82\% for predicting the seventh, thirty and ninety days, respectively. For daily price forecasting, the percentage error was reduced to 0.58, while the error ranged from 2.72\% to 2.85\% for seven- to ninety-day horizons. These results show that the proposed model performed better than other models in the literature.

Suggested Citation

  • Ramin Mousa & Meysam Afrookhteh & Hooman Khaloo & Amir Ali Bengari & Gholamreza Heidary, 2025. "Forecasting of Bitcoin Prices Using Hashrate Features: Wavelet and Deep Stacking Approach," Papers 2501.13136, arXiv.org.
  • Handle: RePEc:arx:papers:2501.13136
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.13136
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.13136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.