Analysis of Bitcoin Price Prediction Using Machine Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Basak, Suryoday & Kar, Saibal & Saha, Snehanshu & Khaidem, Luckyson & Dey, Sudeepa Roy, 2019. "Predicting the direction of stock market prices using tree-based classifiers," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 552-567.
- Dirk G. Baur & Thomas Dimpfl, 2021. "The volatility of Bitcoin and its role as a medium of exchange and a store of value," Empirical Economics, Springer, vol. 61(5), pages 2663-2683, November.
- Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
- Philip, R., 2020. "Estimating permanent price impact via machine learning," Journal of Econometrics, Elsevier, vol. 215(2), pages 414-449.
- Mehmet Levent ERDAS & Abdullah Emre CAGLAR, 2018. "Analysis of the relationships between Bitcoin and exchange rate, commodities and global indexes by asymmetric causality test," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 9, pages 27-45, December.
- Fan, Liwei & Pan, Sijia & Li, Zimin & Li, Huiping, 2016. "An ICA-based support vector regression scheme for forecasting crude oil prices," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 245-253.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- David L. John & Sebastian Binnewies & Bela Stantic, 2024. "Cryptocurrency Price Prediction Algorithms: A Survey and Future Directions," Forecasting, MDPI, vol. 6(3), pages 1-35, August.
- Jing, Ruixue & Rocha, Luis E.C., 2023.
"A network-based strategy of price correlations for optimal cryptocurrency portfolios,"
Finance Research Letters, Elsevier, vol. 58(PC).
- Ruixue Jing & Luis Enrique Correa Rocha, 2023. "A network-based strategy of price correlations for optimal cryptocurrency portfolios," Papers 2304.02362, arXiv.org.
- Ayush Singh & Anshu K. Jha & Amit N. Kumar, 2024. "Prediction of Cryptocurrency Prices through a Path Dependent Monte Carlo Simulation," Papers 2405.12988, arXiv.org.
- Olcay Ozupek & Reyat Yilmaz & Bita Ghasemkhani & Derya Birant & Recep Alp Kut, 2024. "A Novel Hybrid Model (EMD-TI-LSTM) for Enhanced Financial Forecasting with Machine Learning," Mathematics, MDPI, vol. 12(17), pages 1-36, September.
- Ramin Mousa & Meysam Afrookhteh & Hooman Khaloo & Amir Ali Bengari & Gholamreza Heidary, 2025. "Forecasting of Bitcoin Prices Using Hashrate Features: Wavelet and Deep Stacking Approach," Papers 2501.13136, arXiv.org.
- Moiz Qureshi & Hasnain Iftikhar & Paulo Canas Rodrigues & Mohd Ziaur Rehman & S. A. Atif Salar, 2024. "Statistical Modeling to Improve Time Series Forecasting Using Machine Learning, Time Series, and Hybrid Models: A Case Study of Bitcoin Price Forecasting," Mathematics, MDPI, vol. 12(23), pages 1-15, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023.
"Forecasting mid-price movement of Bitcoin futures using machine learning,"
Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
- Akyildirim, Erdinc & Cepni, Oguzhan & Corbet, Shaen & Uddin, Gazi Salah, 2020. "Forecasting Mid-price Movement of Bitcoin Futures Using Machine Learning," Working Papers 20-2020, Copenhagen Business School, Department of Economics.
- Sasan Barak & Navid Parvini, 2023. "Transfer‐entropy‐based dynamic feature selection for evaluating Bitcoin price drivers," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(12), pages 1695-1726, December.
- Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
- Silvia Garc'ia-M'endez & Francisco de Arriba-P'erez & Ana Barros-Vila & Francisco J. Gonz'alez-Casta~no, 2024. "Detection of Temporality at Discourse Level on Financial News by Combining Natural Language Processing and Machine Learning," Papers 2404.01337, arXiv.org.
- Lu-Tao Zhao & Guan-Rong Zeng & Ling-Yun He & Ya Meng, 2020. "Forecasting Short-Term Oil Price with a Generalised Pattern Matching Model Based on Empirical Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1151-1169, April.
- Zhou, Zhongbao & Gao, Meng & Liu, Qing & Xiao, Helu, 2020. "Forecasting stock price movements with multiple data sources: Evidence from stock market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
- Bhuiyan, Rubaiyat Ahsan & Husain, Afzol & Zhang, Changyong, 2021. "A wavelet approach for causal relationship between bitcoin and conventional asset classes," Resources Policy, Elsevier, vol. 71(C).
- Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2022.
"Voting: A machine learning approach,"
European Journal of Operational Research, Elsevier, vol. 299(3), pages 1003-1017.
- Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2020. "Voting: A machine learning approach," Working Paper Series in Economics 145, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
- Di Casola, Paola & Habib, Maurizio Michael & Tercero-Lucas, David, 2023. "Global and local drivers of Bitcoin trading vis-à-vis fiat currencies," Working Paper Series 2868, European Central Bank.
- Yang, Yanlin & Hu, Xuemei & Jiang, Huifeng, 2022. "Group penalized logistic regressions predict up and down trends for stock prices," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
- Longbing Cao, 2021. "AI in Finance: Challenges, Techniques and Opportunities," Papers 2107.09051, arXiv.org.
- Xiao, Yu-jie & Wang, Xiao-kang & Wang, Jian-qiang & Zhang, Hong-yu, 2021. "An adaptive decomposition and ensemble model for short-term air pollutant concentration forecast using ICEEMDAN-ICA," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
- Mercadier, Mathieu & Lardy, Jean-Pierre, 2019.
"Credit spread approximation and improvement using random forest regression,"
European Journal of Operational Research, Elsevier, vol. 277(1), pages 351-365.
- Mathieu Mercadier & Jean-Pierre Lardy, 2019. "Credit spread approximation and improvement using random forest regression," Post-Print hal-03241566, HAL.
- Mathieu Mercadier & Jean-Pierre Lardy, 2019. "Credit Spread Approximation and Improvement using Random Forest Regression," Post-Print hal-02057019, HAL.
- Mathieu Mercadier & Jean-Pierre Lardy, 2021. "Credit spread approximation and improvement using random forest regression," Papers 2106.07358, arXiv.org.
- Guansan Du & Frank Elston, 2022. "RETRACTED ARTICLE: Financial risk assessment to improve the accuracy of financial prediction in the internet financial industry using data analytics models," Operations Management Research, Springer, vol. 15(3), pages 925-940, December.
- Gillmann, Niels & Kim, Alisa, 2021. "Quantification of Economic Uncertainty: a deep learning approach," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242421, Verein für Socialpolitik / German Economic Association.
- Andreas Thiemann, 2021. "Cryptocurrencies: An empirical view from a Tax Perspective," JRC Working Papers on Taxation & Structural Reforms 2021-12, Joint Research Centre.
- Baur, Dirk G. & Karlsen, Jonathan R. & Smales, Lee A. & Trench, Allan, 2024. "Digging deeper - Is bitcoin digital gold? A mining perspective," Journal of Commodity Markets, Elsevier, vol. 34(C).
- Zhang, Wen & Yan, Shaoshan & Li, Jian & Tian, Xin & Yoshida, Taketoshi, 2022. "Credit risk prediction of SMEs in supply chain finance by fusing demographic and behavioral data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
More about this item
Keywords
Bitcoin; machine learning; random forest regression; LSTM;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:16:y:2023:i:1:p:51-:d:1034543. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.