Cryptocurrency Price Prediction Algorithms: A Survey and Future Directions
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CIRJE F-Series CIRJE-F-1078, CIRJE, Faculty of Economics, University of Tokyo.
- Liu, Li, 2019. "Are Bitcon returns predictable?: Evidence from technical indicators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
- Dorien Herremans & Kah Wee Low, 2022. "Forecasting Bitcoin volatility spikes from whale transactions and CryptoQuant data using Synthesizer Transformer models," Papers 2211.08281, arXiv.org.
- Junwei Chen, 2023. "Analysis of Bitcoin Price Prediction Using Machine Learning," JRFM, MDPI, vol. 16(1), pages 1-25, January.
- Bouri, Elie & Saeed, Tareq & Vo, Xuan Vinh & Roubaud, David, 2021. "Quantile connectedness in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
- Giancarlo Giudici & Alistair Milne & Dmitri Vinogradov, 2020. "Cryptocurrencies: market analysis and perspectives," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 1-18, March.
- Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000.
"Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation,"
Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
- Andrew Lo & Harry Mamaysky & Jiang Wang, 1999. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Computing in Economics and Finance 1999 402, Society for Computational Economics.
- Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," NBER Working Papers 7613, National Bureau of Economic Research, Inc.
- Eom, Cheoljun & Kaizoji, Taisei & Kang, Sang Hoon & Pichl, Lukas, 2019. "Bitcoin and investor sentiment: Statistical characteristics and predictability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 511-521.
- Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CARF F-Series CARF-F-430, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CARF F-Series CARF-F-441, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Andr'es Garc'ia-Medina & Toan Luu Duc Huynh3, 2021. "What drives bitcoin? An approach from continuous local transfer entropy and deep learning classification models," Papers 2109.01214, arXiv.org.
- Ahmed M. Khedr & Ifra Arif & Pravija Raj P V & Magdi El‐Bannany & Saadat M. Alhashmi & Meenu Sreedharan, 2021. "Cryptocurrency price prediction using traditional statistical and machine‐learning techniques: A survey," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(1), pages 3-34, January.
- Feng, Wenjun & Wang, Yiming & Zhang, Zhengjun, 2018. "Informed trading in the Bitcoin market," Finance Research Letters, Elsevier, vol. 26(C), pages 63-70.
- Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
- Suhwan Ji & Jongmin Kim & Hyeonseung Im, 2019. "A Comparative Study of Bitcoin Price Prediction Using Deep Learning," Mathematics, MDPI, vol. 7(10), pages 1-20, September.
- Nakano, Masafumi & Takahashi, Akihiko & Takahashi, Soichiro, 2018. "Bitcoin technical trading with artificial neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 587-609.
- Yianni Doumenis & Javad Izadi & Pradeep Dhamdhere & Epameinondas Katsikas & Dimitrios Koufopoulos, 2021. "A Critical Analysis of Volatility Surprise in Bitcoin Cryptocurrency and Other Financial Assets," Risks, MDPI, vol. 9(11), pages 1-15, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
- Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
- Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
- Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
- Nagula, Pavan Kumar & Alexakis, Christos, 2022. "A new hybrid machine learning model for predicting the bitcoin (BTC-USD) price," Journal of Behavioral and Experimental Finance, Elsevier, vol. 36(C).
- Rico-Peña, Juan Jesús & Arguedas-Sanz, Raquel & López-Martin, Carmen, 2023. "Models used to characterise blockchain features. A systematic literature review and bibliometric analysis," Technovation, Elsevier, vol. 123(C).
- Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
- Syed Abul, Basher & Perry, Sadorsky, 2022. "Forecasting Bitcoin price direction with random forests: How important are interest rates, inflation, and market volatility?," MPRA Paper 113293, University Library of Munich, Germany.
- Sanjib Kumar Nayak & Sarat Chandra Nayak & Subhranginee Das, 2021. "Modeling and Forecasting Cryptocurrency Closing Prices with Rao Algorithm-Based Artificial Neural Networks: A Machine Learning Approach," FinTech, MDPI, vol. 1(1), pages 1-16, December.
- Bouteska, Ahmed & Abedin, Mohammad Zoynul & Hajek, Petr & Yuan, Kunpeng, 2024. "Cryptocurrency price forecasting – A comparative analysis of ensemble learning and deep learning methods," International Review of Financial Analysis, Elsevier, vol. 92(C).
- Alessandra Cretarola & Gianna Figà-Talamanca & Cyril Grunspan, 2021. "Blockchain and cryptocurrencies: economic and financial research," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 781-787, December.
- Łęt Blanka & Sobański Konrad & Świder Wojciech & Włosik Katarzyna, 2022. "Is the cryptocurrency market efficient? Evidence from an analysis of fundamental factors for Bitcoin and Ethereum," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 58(4), pages 351-370, December.
- Vasu Kalariya & Pushpendra Parmar & Patel Jay & Sudeep Tanwar & Maria Simona Raboaca & Fayez Alqahtani & Amr Tolba & Bogdan-Constantin Neagu, 2022. "Stochastic Neural Networks-Based Algorithmic Trading for the Cryptocurrency Market," Mathematics, MDPI, vol. 10(9), pages 1-15, April.
- Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
- Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
- Jlassi, Nabila Boukef & Jeribi, Ahmed & Lahiani, Amine & Mefteh-Wali, Salma, 2023. "Subsample analysis of stock market – cryptocurrency returns tail dependence: A copula approach for the tails," Finance Research Letters, Elsevier, vol. 58(PA).
- Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
- R. K. Jana & Indranil Ghosh & Debojyoti Das, 2021. "A differential evolution-based regression framework for forecasting Bitcoin price," Annals of Operations Research, Springer, vol. 306(1), pages 295-320, November.
- Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019.
"Computational approaches and data analytics in financial services: A literature review,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
- Dimitris Andriosopoulos & Michael Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Post-Print hal-02879937, HAL.
- Dimitris Andriosopoulos & Michael Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Post-Print hal-02880149, HAL.
More about this item
Keywords
cryptocurrency; prediction; influential parameters; machine learning; deep learning; research gaps; survey;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:6:y:2024:i:3:p:34-671:d:1457158. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.