IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/52379.html
   My bibliography  Save this paper

Adaptive trend estimation in financial time series via multiscale change-point-induced basis recovery

Author

Listed:
  • Schröder, Anna Louise
  • Fryzlewicz, Piotr

Abstract

Low-frequency financial returns can be modelled as centered around piecewise-constant trend functions which change at certain points in time. We propose a new stochastic time series framework which captures this feature. The main ingredient of our model is a hierarchically-ordered oscillatory basis of simple piecewise-constant functions. It differs from the Fourier-like bases traditionally used in time series analysis in that it is determined by change-points, and hence needs to be estimated from the data before it can be used. The resulting model enables easy simulation and provides interpretable decomposition of nonstationarity into short- and long-term components. The model permits consistent estimation of the multiscale change-point-induced basis via binary segmentation, which results in a variable-span moving-average estimator of the current trend, and allows for short-term forecasting of the average return.

Suggested Citation

  • Schröder, Anna Louise & Fryzlewicz, Piotr, 2013. "Adaptive trend estimation in financial time series via multiscale change-point-induced basis recovery," MPRA Paper 52379, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:52379
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/52379/1/MPRA_paper_52379.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hernando Ombao & Jonathan Raz & Rainer von Sachs & Wensheng Guo, 2002. "The SLEX Model of a Non-Stationary Random Process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 171-200, March.
    2. Fryzlewicz, Piotr, 2007. "Unbalanced Haar technique for nonparametric function estimation," LSE Research Online Documents on Economics 25216, London School of Economics and Political Science, LSE Library.
    3. G. P. Nason & R. Von Sachs & G. Kroisandt, 2000. "Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 271-292.
    4. Cizek, P. & Haerdle, W. & Spokoiny, V., 2007. "Adaptive Pointwise Estimation in Time-Inhomogeneous Time-Series Models," Other publications TiSEM a797e4a8-12cf-4ac5-9fae-b, Tilburg University, School of Economics and Management.
    5. Bai, Jushan, 1997. "Estimating Multiple Breaks One at a Time," Econometric Theory, Cambridge University Press, vol. 13(3), pages 315-352, June.
    6. P. Čížek & W. Härdle & V. Spokoiny, 2009. "Adaptive pointwise estimation in time-inhomogeneous conditional heteroscedasticity models," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 248-271, July.
    7. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value‐at‐Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    8. Marc Lavielle & Eric Moulines, 2000. "Least‐squares Estimation of an Unknown Number of Shifts in a Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 33-59, January.
    9. Fryzlewicz, Piotr, 2007. "Unbalanced Haar Technique for Nonparametric Function Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1318-1327, December.
    10. Hasabrouck, Joel & Sofianos, George, 1993. "The Trades of Market Makers: An Empirical Analysis of NYSE Specialists," Journal of Finance, American Finance Association, vol. 48(5), pages 1565-1593, December.
    11. Piotr Fryzlewicz & Theofanis Sapatinas & Suhasini Subba Rao, 2006. "A Haar--Fisz technique for locally stationary volatility estimation," Biometrika, Biometrika Trust, vol. 93(3), pages 687-704, September.
    12. Gençay, Ramazan & Gençay, Ramazan & Selçuk, Faruk & Whitcher, Brandon J., 2001. "An Introduction to Wavelets and Other Filtering Methods in Finance and Economics," Elsevier Monographs, Elsevier, edition 1, number 9780122796708.
    13. Fryzlewicz, Piotr & Sapatinas, Theofanis & Subba Rao, Suhasini, 2006. "A Haar-Fisz technique for locally stationary volatility estimation," LSE Research Online Documents on Economics 25225, London School of Economics and Political Science, LSE Library.
    14. Pan, Jianmin & Chen, Jiahua, 2006. "Application of modified information criterion to multiple change point problems," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2221-2241, November.
    15. Lee, Chung-Bow, 1995. "Estimating the number of change points in a sequence of independent normal random variables," Statistics & Probability Letters, Elsevier, vol. 25(3), pages 241-248, November.
    16. Leitch, Gordon & Tanner, J Ernest, 1991. "Economic Forecast Evaluation: Profits versus the Conventional Error Measures," American Economic Review, American Economic Association, vol. 81(3), pages 580-590, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean Jewell & Paul Fearnhead & Daniela Witten, 2022. "Testing for a change in mean after changepoint detection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1082-1104, September.
    2. Li Cai & Lisha Li & Simin Huang & Liang Ma & Lijian Yang, 2020. "Oracally efficient estimation for dense functional data with holiday effects," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 282-306, March.
    3. Qin Shao & Lijian Yang, 2017. "Oracally efficient estimation and consistent model selection for auto-regressive moving average time series with trend," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 507-524, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fryzlewicz, Piotr & Nason, Guy P., 2006. "Haar-Fisz estimation of evolutionary wavelet spectra," LSE Research Online Documents on Economics 25227, London School of Economics and Political Science, LSE Library.
    2. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    3. Fryzlewicz, Piotr, 2020. "Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection," LSE Research Online Documents on Economics 103430, London School of Economics and Political Science, LSE Library.
    4. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    5. Homesh Sayal & John A. D. Aston & Duncan Elliott & Hernando Ombao, 2017. "An introduction to applications of wavelet benchmarking with seasonal adjustment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 863-889, June.
    6. Fengler, Matthias & Okhrin, Ostap, 2012. "Realized Copula," Economics Working Paper Series 1214, University of St. Gallen, School of Economics and Political Science.
    7. Fryzlewicz, Piotr & Nason, Guy P. & von Sachs, Rainer, 2008. "A wavelet-Fisz approach to spectrum estimation," LSE Research Online Documents on Economics 25186, London School of Economics and Political Science, LSE Library.
    8. Fryzlewicz, Piotr & Ombao, Hernando, 2009. "Consistent classification of non-stationary time series using stochastic wavelet representations," LSE Research Online Documents on Economics 25162, London School of Economics and Political Science, LSE Library.
    9. Cho, Haeran & Fryzlewicz, Piotr, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," LSE Research Online Documents on Economics 57147, London School of Economics and Political Science, LSE Library.
    10. repec:cte:wsrepe:ws131718 is not listed on IDEAS
    11. Timmermans, Catherine & Delsol, Laurent & von Sachs, Rainer, 2013. "Using Bagidis in nonparametric functional data analysis: Predicting from curves with sharp local features," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 421-444.
    12. Fryzlewicz, Piotr, 2018. "Likelihood ratio Haar variance stabilization and normalization for Poisson and other non-Gaussian noise removal," LSE Research Online Documents on Economics 82942, London School of Economics and Political Science, LSE Library.
    13. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    14. Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
    15. Chau, Joris & von Sachs, Rainer, 2022. "Time-varying spectral matrix estimation via intrinsic wavelet regression for surfaces of Hermitian positive definite matrices," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    16. Fryzlewicz, Piotr, 2014. "Wild binary segmentation for multiple change-point detection," LSE Research Online Documents on Economics 57146, London School of Economics and Political Science, LSE Library.
    17. Gallegati, Marco & Ramsey, James B., 2013. "Structural change and phase variation: A re-examination of the q-model using wavelet exploratory analysis," Structural Change and Economic Dynamics, Elsevier, vol. 25(C), pages 60-73.
    18. repec:hum:wpaper:sfb649dp2012-034 is not listed on IDEAS
    19. Wang Haoyu & Junpeng Di & Qing Han, 2023. "Adaptive hedging horizon and hedging performance estimation," Papers 2302.00251, arXiv.org.
    20. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    21. Haoran Lu & Dianpeng Wang, 2024. "Grouped Change-Points Detection and Estimation in Panel Data," Mathematics, MDPI, vol. 12(5), pages 1-20, March.
    22. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.

    More about this item

    Keywords

    Financial time series; Adaptive trend estimation; Change-point detection; Binary segmentation; Unbalanced Haar wavelets; Frequency-domain modelling;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:52379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.