IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v146y2021icp333-358.html
   My bibliography  Save this article

Theory-based residual neural networks: A synergy of discrete choice models and deep neural networks

Author

Listed:
  • Wang, Shenhao
  • Mo, Baichuan
  • Zhao, Jinhua

Abstract

Researchers often treat data-driven and theory-driven models as two disparate or even conflicting methods in travel behavior analysis. However, the two methods are highly complementary because data-driven methods are more predictive but less interpretable and robust, while theory-driven methods are more interpretable and robust but less predictive. Using their complementary nature, this study designs a theory-based residual neural network (TB-ResNet) framework, which synergizes discrete choice models (DCMs) and deep neural networks (DNNs) based on their shared utility interpretation. The TB-ResNet framework is simple, as it uses a (δ, 1-δ) weighting to take advantage of DCMs’ simplicity and DNNs’ richness, and to prevent underfitting from the DCMs and overfitting from the DNNs. This framework is also flexible: three instances of TB-ResNets are designed based on multinomial logit model (MNL-ResNets), prospect theory (PT-ResNets), and hyperbolic discounting (HD-ResNets), which are tested on three data sets. Compared to pure DCMs, the TB-ResNets provide greater prediction accuracy and reveal a richer set of behavioral mechanisms owing to the utility function augmented by the DNN component in the TB-ResNets. Compared to pure DNNs, the TB-ResNets can modestly improve prediction and significantly improve interpretation and robustness, because the DCM component in the TB-ResNets stabilizes the utility functions and input gradients. Overall, this study demonstrates that it is both feasible and desirable to synergize DCMs and DNNs by combining their utility specifications under a TB-ResNet framework. Although some limitations remain, this TB-ResNet framework is an important first step to create mutual benefits between DCMs and DNNs for travel behavior modeling, with joint improvement in prediction, interpretation, and robustness.

Suggested Citation

  • Wang, Shenhao & Mo, Baichuan & Zhao, Jinhua, 2021. "Theory-based residual neural networks: A synergy of discrete choice models and deep neural networks," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 333-358.
  • Handle: RePEc:eee:transb:v:146:y:2021:i:c:p:333-358
    DOI: 10.1016/j.trb.2021.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261521000412
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2021.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2018. "Big Data And Big Cities: The Promises And Limitations Of Improved Measures Of Urban Life," Economic Inquiry, Western Economic Association International, vol. 56(1), pages 114-137, January.
    2. Matthew Rabin & Ted O'Donoghue, 1999. "Doing It Now or Later," American Economic Review, American Economic Association, vol. 89(1), pages 103-124, March.
    3. Ted O'Donoghue & Matthew Rabin, 2001. "Choice and Procrastination," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(1), pages 121-160.
    4. Botond Kőszegi & Matthew Rabin, 2006. "A Model of Reference-Dependent Preferences," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(4), pages 1133-1165.
    5. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    6. Supreet Kaur & Michael Kremer & Sendhil Mullainathan, 2015. "Self-Control at Work," Journal of Political Economy, University of Chicago Press, vol. 123(6), pages 1227-1277.
    7. Dhami, Sanjit, 2016. "The Foundations of Behavioral Economic Analysis," OUP Catalogue, Oxford University Press, number 9780198715535.
    8. Kenneth Train, 1980. "A Structured Logit Model of Auto Ownership and Mode Choice," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(2), pages 357-370.
    9. Quang Nguyen & Colin Camerer & Tomomi Tanaka, 2010. "Risk and Time Preferences Linking Experimental and Household Data from Vietnam," Post-Print halshs-00547090, HAL.
    10. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    11. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    12. George Loewenstein & Drazen Prelec, 1992. "Anomalies in Intertemporal Choice: Evidence and an Interpretation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 573-597.
    13. Wang, Shenhao & Zhao, Jinhua, 2019. "Risk preference and adoption of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 215-229.
    14. Elaine M. Liu, 2013. "Time to Change What to Sow: Risk Preferences and Technology Adoption Decisions of Cotton Farmers in China," The Review of Economics and Statistics, MIT Press, vol. 95(4), pages 1386-1403, October.
    15. Tomomi Tanaka & Colin F. Camerer & Quang Nguyen, 2010. "Risk and Time Preferences: Linking Experimental and Household Survey Data from Vietnam," American Economic Review, American Economic Association, vol. 100(1), pages 557-571, March.
    16. Yves Bentz & Dwight Merunka, 2000. "Neural networks and the multinomial logit for brand choice modelling: a hybrid approach," Post-Print hal-01822273, HAL.
    17. Andre Palma & Moshe Ben-Akiva & David Brownstone & Charles Holt & Thierry Magnac & Daniel McFadden & Peter Moffatt & Nathalie Picard & Kenneth Train & Peter Wakker & Joan Walker, 2008. "Risk, uncertainty and discrete choice models," Marketing Letters, Springer, vol. 19(3), pages 269-285, December.
      • André de Palma & Moshe Ben-Akiva & David Brownstone & Charles Holt & Thierry Magnac & Daniel McFadden & Peter Moffatt & Nathalie Picard & Kenneth Train & Peter Wakker & Joan Walker, 2008. "Risk, Uncertainty and Discrete Choice Models," THEMA Working Papers 2008-02, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    18. Wang, Shenhao & Wang, Qingyi & Zhao, Jinhua, 2020. "Multitask learning deep neural networks to combine revealed and stated preference data," Journal of choice modelling, Elsevier, vol. 37(C).
    19. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    20. Mozolin, M. & Thill, J. -C. & Lynn Usery, E., 2000. "Trip distribution forecasting with multilayer perceptron neural networks: A critical evaluation," Transportation Research Part B: Methodological, Elsevier, vol. 34(1), pages 53-73, January.
    21. Colin F. Camerer & Howard Kunreuther, 1989. "Decision processes for low probability events: Policy implications," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 8(4), pages 565-592.
    22. Justin Sydnor, 2010. "(Over)insuring Modest Risks," American Economic Journal: Applied Economics, American Economic Association, vol. 2(4), pages 177-199, October.
    23. Paul A. Samuelson, 1937. "A Note on Measurement of Utility," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 4(2), pages 155-161.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Rui & Bekhor, Shlomo, 2022. "A variational autoencoder approach for choice set generation and implicit perception of alternatives in choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 273-294.
    2. Zhao, Bozhi & Suo, Yining & Tang, Li & Li, Chenglong & Fu, Mengying & Huang, Longyang, 2024. "Urban air mobility for time-sensitive goods with explicit customer preferences: A case study on Chengdu," Journal of Air Transport Management, Elsevier, vol. 118(C).
    3. Smeele, Nicholas V.R. & Chorus, Caspar G. & Schermer, Maartje H.N. & de Bekker-Grob, Esther W., 2023. "Towards machine learning for moral choice analysis in health economics: A literature review and research agenda," Social Science & Medicine, Elsevier, vol. 326(C).
    4. Kim, Eui-Jin & Bansal, Prateek, 2024. "A new flexible and partially monotonic discrete choice model," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    5. Qingyi Wang & Shenhao Wang & Yunhan Zheng & Hongzhou Lin & Xiaohu Zhang & Jinhua Zhao & Joan Walker, 2023. "Deep hybrid model with satellite imagery: how to combine demand modeling and computer vision for behavior analysis?," Papers 2303.04204, arXiv.org, revised Feb 2024.
    6. Wang, Qingyi & Wang, Shenhao & Zheng, Yunhan & Lin, Hongzhou & Zhang, Xiaohu & Zhao, Jinhua & Walker, Joan, 2024. "Deep hybrid model with satellite imagery: How to combine demand modeling and computer vision for travel behavior analysis?," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    7. Ahmad, Munir & Wu, Yiyun, 2022. "Household-based factors affecting uptake of biogas plants in Bangladesh: Implications for sustainable development," Renewable Energy, Elsevier, vol. 194(C), pages 858-867.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shenhao Wang & Baichuan Mo & Jinhua Zhao, 2020. "Theory-based residual neural networks: A synergy of discrete choice models and deep neural networks," Papers 2010.11644, arXiv.org.
    2. Wang, Shenhao & Zhao, Jinhua, 2019. "Risk preference and adoption of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 215-229.
    3. Heutel, Garth, 2019. "Prospect theory and energy efficiency," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 236-254.
    4. Doidge, Mary & Feng, Hongli & Hennessy, David A., 2018. "Farmers’ valuation of changes to crop insurance coverage level – a test of third generation prospect theory," 2018 Annual Meeting, August 5-7, Washington, D.C. 274478, Agricultural and Applied Economics Association.
    5. Lampe, Immanuel & Würtenberger, Daniel, 2020. "Loss aversion and the demand for index insurance," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 678-693.
    6. Julia Ihli, Hanna & Chiputwa, Brian & Winter, Etti & Gassner, Anja, 2022. "Risk and time preferences for participating in forest landscape restoration: The case of coffee farmers in Uganda," World Development, Elsevier, vol. 150(C).
    7. Nadia A. Streletskaya & Samuel D. Bell & Maik Kecinski & Tongzhe Li & Simanti Banerjee & Leah H. Palm‐Forster & David Pannell, 2020. "Agricultural Adoption and Behavioral Economics: Bridging the Gap," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 42(1), pages 54-66, March.
    8. Schleich, Joachim & Gassmann, Xavier & Meissner, Thomas & Faure, Corinne, 2019. "A large-scale test of the effects of time discounting, risk aversion, loss aversion, and present bias on household adoption of energy-efficient technologies," Energy Economics, Elsevier, vol. 80(C), pages 377-393.
    9. Teck H. Ho & Noah Lim & Colin Camerer, 2005. "Modeling the Psychology of Consumer and Firm Behavior with Behavioral Economics," Levine's Bibliography 784828000000000476, UCLA Department of Economics.
    10. Immanuel Lampe & Daniel Würtenberger, 2019. "Loss Aversion And The Demand For Index Insurance," Working Papers on Finance 1907, University of St. Gallen, School of Finance.
    11. Quang Nguyen, 2011. "Does nurture matter: Theory and experimental investigation on the effect of working environment on risk and time preferences," Journal of Risk and Uncertainty, Springer, vol. 43(3), pages 245-270, December.
    12. Dorian Jullien, 2016. "Under Uncertainty, Over Time and Regarding Other People: Rationality in 3D," GREDEG Working Papers 2016-20, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    13. Wang, Shenhao & Wang, Qingyi & Bailey, Nate & Zhao, Jinhua, 2021. "Deep neural networks for choice analysis: A statistical learning theory perspective," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 60-81.
    14. Stefano DellaVigna, 2009. "Psychology and Economics: Evidence from the Field," Journal of Economic Literature, American Economic Association, vol. 47(2), pages 315-372, June.
    15. Xiaodong Du & Hongli Feng & David A. Hennessy, 2017. "Rationality of Choices in Subsidized Crop Insurance Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(3), pages 732-756.
    16. Arjan Verschoor & Ben D’Exelle, 2022. "Probability weighting for losses and for gains among smallholder farmers in Uganda," Theory and Decision, Springer, vol. 92(1), pages 223-258, February.
    17. Xiaodong Du & Hongli Feng & David A. Hennessy, 2017. "Rationality of Choices in Subsidized Crop Insurance Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(3), pages 732-756.
    18. Ali al-Nowaihi & Sanjit Dhami, 2018. "Foundations for Intertemporal Choice," CESifo Working Paper Series 6913, CESifo.
    19. Han, Ruokang & Takahashi, Taiki, 2012. "Psychophysics of time perception and valuation in temporal discounting of gain and loss," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6568-6576.
    20. Ferdinand M. Vieider & Peter Martinsson & Pham Khanh Nam & Nghi Truong, 2019. "Risk preferences and development revisited," Theory and Decision, Springer, vol. 86(1), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:146:y:2021:i:c:p:333-358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.