IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v29y1995i6p471-483.html
   My bibliography  Save this article

A heteroscedastic extreme value model of intercity travel mode choice

Author

Listed:
  • Bhat, Chandra R.

Abstract

Estimation of disaggregate mode choice models to estimate the ridership share on a proposed new (or improved) intercity travel service and to identify the modes from which existing intercity travelers will be diverted to the new or upgraded service constitutes a critical part of evaluating alternative travel service proposals to alleviate intercity travel congestion. This paper develops a new heteroscedastic extreme value model of intercity mode choice that overcomes the 'independence of irrelevant alternatives' (IIA) property of the commonly used multinomial logit model. The proposed model allows a more flexible cross-elasticity structure among alternatives than the nested logit model. It is also simple, intuitive and much less of a computational burden than the multinomial probit model. The paper discusses the non-IIA property of the heteroscedastic extreme value model and presents an efficient and accurate Gaussian quadrature technique to estimate the heteroscedastic model using the maximum likelihood method. The multinomial logit, alternative nested logit structures, and the heteroscedastic model are estimated to examine the impact of improved rail service on business travel in the Toronto-Montreal corridor. The nested logit structures are either inconsistent with utility maximization principles or are not significantly better than the multinomial logit model. The heteroscedastic extreme value model, however, is found to be superior to the multinomial logit model. The heteroscedastic model predicts smaller increases in rail shares and smaller decreases in non-rail shares than the multinomial logit in response to rail-service improvements. It also suggests a larger percentage decrease in air share and a smaller percentage decrease in auto share than the multinomial logit. Thus, the multinomial logit model is likely to provide overly optimistic projections of rail ridership and revenue, and of alleviation in inter-city travel congestion in general, and highway traffic congestion in particular. These findings point to the limitations of the multinomial logit and nested logit models in studying intercity mode choice behavior and to the usefulness of the heteroscedastic model proposed in this paper.

Suggested Citation

  • Bhat, Chandra R., 1995. "A heteroscedastic extreme value model of intercity travel mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 29(6), pages 471-483, December.
  • Handle: RePEc:eee:transb:v:29:y:1995:i:6:p:471-483
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0191-2615(95)00015-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daly, Andrew, 1987. "Estimating "tree" logit models," Transportation Research Part B: Methodological, Elsevier, vol. 21(4), pages 251-267, August.
    2. Horowitz, Joel L., 1991. "Reconsidering the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 433-438, December.
    3. Horowitz, Joel, 1981. "Identification and diagnosis of specification errors in the multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 15(5), pages 345-360, October.
    4. Butler, J S & Moffitt, Robert, 1982. "A Computationally Efficient Quadrature Procedure for the One-Factor Multinomial Probit Model," Econometrica, Econometric Society, vol. 50(3), pages 761-764, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hammar, Henrik & Carlsson, Fredrik, 2001. "Smokers' Decisions To Quit Smoking," Working Papers in Economics 59, University of Gothenburg, Department of Economics.
    2. Laisney, François & Pohlmeier, Winfried & Staat, Matthias, 1991. "Estimation of labour supply functions using panel data: a survey," ZEW Discussion Papers 91-05, ZEW - Leibniz Centre for European Economic Research.
    3. Das, Marcel & van Soest, Arthur, 1999. "A panel data model for subjective information on household income growth," Journal of Economic Behavior & Organization, Elsevier, vol. 40(4), pages 409-426, December.
    4. Chen, Yi-Yi & Schmidt, Peter & Wang, Hung-Jen, 2014. "Consistent estimation of the fixed effects stochastic frontier model," Journal of Econometrics, Elsevier, vol. 181(2), pages 65-76.
    5. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    6. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    7. Hendrik Thiel & Stephan L. Thomsen, 2015. "Individual Poverty Paths and the Stability of Control-Perception," SOEPpapers on Multidisciplinary Panel Data Research 794, DIW Berlin, The German Socio-Economic Panel (SOEP).
    8. Roberts, M. & Tybout, J., 1993. "An Empirical Model of Sunk Costs and the Decision to Export," Papers 4-93-3, Pennsylvania State - Department of Economics.
    9. Yai, Tetsuo & Iwakura, Seiji & Morichi, Shigeru, 1997. "Multinomial probit with structured covariance for route choice behavior," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 195-207, June.
    10. Bolduc, Denis & Kaci, Mustapha, 1993. "Estimation des modèles probit polytomiques : un survol des techniques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 69(3), pages 161-191, septembre.
    11. Guizar-Mateos, Isai & Dadzie, Nicholas, 2014. "Financial Services and Divisible Technology Dis-adoption among Farm Households: Theory and Empirical Application Using Data from Ethiopia," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 171765, Agricultural and Applied Economics Association.
    12. Schupp, Fabian & Silbermann, Leonid, 2017. "The Role of Structural Funding for Stability in the German Banking Sector," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168166, Verein für Socialpolitik / German Economic Association.
    13. Jörg Breitung & Michael Lechner, 1996. "Estimation de modèles non linéaires sur données de panel par la méthode des moments généralisés," Économie et Prévision, Programme National Persée, vol. 126(5), pages 191-203.
    14. T. Lakshmanasamy, 2022. "Money and Happiness in India: Is Relative Comparison Cardinal or Ordinal and Same for All?," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(4), pages 931-957, December.
    15. Paul Frijters & John P. Haisken-DeNew & Michael Shields, 2003. "Estimating The Causal Effect of Income on Health: Evidence from Post Reunification East Germany," CEPR Discussion Papers 465, Centre for Economic Policy Research, Research School of Economics, Australian National University.
    16. Hernández-Quevedo, Cristina & Jones, Andrew M. & Rice, Nigel, 2008. "Persistence in health limitations: A European comparative analysis," Journal of Health Economics, Elsevier, vol. 27(6), pages 1472-1488, December.
    17. List John A. & Sinha Paramita & Taylor Michael H., 2006. "Using Choice Experiments to Value Non-Market Goods and Services: Evidence from Field Experiments," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 6(2), pages 1-39, January.
    18. Aitken, Brian & Hanson, Gordon H. & Harrison, Ann E., 1997. "Spillovers, foreign investment, and export behavior," Journal of International Economics, Elsevier, vol. 43(1-2), pages 103-132, August.
    19. Honora Smith & Christine Currie & Pornpimol Chaiwuttisak & Andreas Kyprianou, 2018. "Patient choice modelling: how do patients choose their hospitals?," Health Care Management Science, Springer, vol. 21(2), pages 259-268, June.
    20. Cao, Liqun & Cao, Jian & Zhao, Jihong, 2004. "Family, welfare, and delinquency," Journal of Criminal Justice, Elsevier, vol. 32(6), pages 565-576.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:29:y:1995:i:6:p:471-483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.