IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v161y2022icp1-12.html
   My bibliography  Save this article

Spatially correlated nested logit model for spatial location choice

Author

Listed:
  • Perez-Lopez, Jose-Benito
  • Novales, Margarita
  • Orro, Alfonso

Abstract

Residential location choice is a key component of the models for predicting land-use and transport demand in urban planning. In general, it requires to consider correlation between spatial alternatives. The approach of nested alternatives of the nested logit model has proved highly efficient in this context. This approach incorporates into the nested logit model both spatial and non-spatial correlations due to unobserved variables. The approach of metric extensions to the spatially correlated logit model specifies models for capturing spatial correlations between alternatives without having to design a nested structure. A model combining both approaches is proposed in this research. The spatially correlated nested logit model proposed herein models the correlation between alternatives of the nests of a nested logit model using a metric of spatial correlation between pairs of alternatives. The proposed model improves the properties of the nested logit model without the need of increasing the number of unknown parameters. Our model also improves the properties of a spatially correlated model with the same spatial metric. When needing to incorporate preference heterogeneity into the model, the proposed model is compatible with a mixed specification with random coefficients. The spatially correlated nested logit model was empirically applied to the real case of residential location choice in the city of Santander in Spain. In this empirical context, this model improved the explanatory and predictive power of the models that it combines.

Suggested Citation

  • Perez-Lopez, Jose-Benito & Novales, Margarita & Orro, Alfonso, 2022. "Spatially correlated nested logit model for spatial location choice," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 1-12.
  • Handle: RePEc:eee:transb:v:161:y:2022:i:c:p:1-12
    DOI: 10.1016/j.trb.2022.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261522000789
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2022.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martínez-Pardo, Ana & Orro, Alfonso & Garcia-Alonso, Lorena, 2020. "Analysis of port choice: A methodological proposal adjusted with public data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 178-193.
    2. Thomas E. Guerrero & C. Angelo Guevara & Elisabetta Cherchi & Juan de Dios Ortúzar, 2021. "Addressing endogeneity in strategic urban mode choice models," Transportation, Springer, vol. 48(4), pages 2081-2102, August.
    3. Small, Kenneth A, 1987. "A Discrete Choice Model for Ordered Alternatives," Econometrica, Econometric Society, vol. 55(2), pages 409-424, March.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    5. Abbe, E. & Bierlaire, M. & Toledo, T., 2007. "Normalization and correlation of cross-nested logit models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 795-808, August.
    6. Guevara, C. Angelo, 2015. "Critical assessment of five methods to correct for endogeneity in discrete-choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 240-254.
    7. Francesca Pagliara & Alan Wilson, 2010. "The State-of-the-Art in Building Residential Location Models," Advances in Spatial Science, in: Francesca Pagliara & John Preston & David Simmonds (ed.), Residential Location Choice, pages 1-20, Springer.
    8. Koppelman, Frank S. & Wen, Chieh-Hua, 2000. "The paired combinatorial logit model: properties, estimation and application," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 75-89, February.
    9. Parady, Giancarlos & Ory, David & Walker, Joan, 2021. "The overreliance on statistical goodness-of-fit and under-reliance on model validation in discrete choice models: A review of validation practices in the transportation academic literature," Journal of choice modelling, Elsevier, vol. 38(C).
    10. Basar, Gözen & Bhat, Chandra, 2004. "A parameterized consideration set model for airport choice: an application to the San Francisco Bay Area," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 889-904, December.
    11. Papola, Andrea, 2004. "Some developments on the cross-nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 38(9), pages 833-851, November.
    12. Ibeas, Ángel & Cordera, Ruben & dell’Olio, Luigi & Coppola, Pierluigi, 2013. "Modelling the spatial interactions between workplace and residential location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 110-122.
    13. José-Benito Pérez-López & Margarita Novales & Francisco-Alberto Varela-García & Alfonso Orro, 2020. "Residential Location Econometric Choice Modeling with Irregular Zoning: Common Border Spatial Correlation Metric," Networks and Spatial Economics, Springer, vol. 20(3), pages 785-802, September.
    14. Wen, Chieh-Hua & Koppelman, Frank S., 2001. "The generalized nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 627-641, August.
    15. Bolduc, Denis, 1992. "Generalized autoregressive errors in the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 26(2), pages 155-170, April.
    16. Cristian Angelo Guevara & Moshe E. Ben-Akiva, 2012. "Change of Scale and Forecasting with the Control-Function Method in Logit Models," Transportation Science, INFORMS, vol. 46(3), pages 425-437, August.
    17. Moshe Ben-Akiva & Joffre Swait, 1986. "The Akaike Likelihood Ratio Index," Transportation Science, INFORMS, vol. 20(2), pages 133-136, May.
    18. Joel L. Horowitz, 1983. "Statistical Comparison of Non-Nested Probabilistic Discrete Choice Models," Transportation Science, INFORMS, vol. 17(3), pages 319-350, August.
    19. Menard, Scott, 2004. "Six Approaches to Calculating Standardized Logistic Regression Coefficients," The American Statistician, American Statistical Association, vol. 58, pages 218-223, August.
    20. Sener, Ipek N. & Pendyala, Ram M. & Bhat, Chandra R., 2011. "Accommodating spatial correlation across choice alternatives in discrete choice models: an application to modeling residential location choice behavior," Journal of Transport Geography, Elsevier, vol. 19(2), pages 294-303.
    21. Bhat, Chandra R. & Guo, Jessica, 2004. "A mixed spatially correlated logit model: formulation and application to residential choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 147-168, February.
    22. Garrido, Rodrigo A. & Mahmassani, Hani S., 2000. "Forecasting freight transportation demand with the space-time multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 403-418, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José-Benito Pérez-López & Margarita Novales & Francisco-Alberto Varela-García & Alfonso Orro, 2020. "Residential Location Econometric Choice Modeling with Irregular Zoning: Common Border Spatial Correlation Metric," Networks and Spatial Economics, Springer, vol. 20(3), pages 785-802, September.
    2. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    3. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    4. Marzano, Vittorio & Papola, Andrea & Simonelli, Fulvio & Vitillo, Roberta, 2013. "A practically tractable expression of the covariances of the Cross-Nested Logit model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 1-11.
    5. Papola, Andrea, 2016. "A new random utility model with flexible correlation pattern and closed-form covariance expression: The CoRUM," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 80-96.
    6. Bekhor, Shlomo & Prashker, Joseph N., 2008. "GEV-based destination choice models that account for unobserved similarities among alternatives," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 243-262, March.
    7. Ibeas, Ángel & Cordera, Ruben & dell’Olio, Luigi & Coppola, Pierluigi, 2013. "Modelling the spatial interactions between workplace and residential location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 110-122.
    8. Marzano, Vittorio & Papola, Andrea, 2008. "On the covariance structure of the Cross-Nested Logit model," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 83-98, February.
    9. Sener, Ipek N. & Pendyala, Ram M. & Bhat, Chandra R., 2011. "Accommodating spatial correlation across choice alternatives in discrete choice models: an application to modeling residential location choice behavior," Journal of Transport Geography, Elsevier, vol. 19(2), pages 294-303.
    10. Mai, Tien, 2016. "A method of integrating correlation structures for a generalized recursive route choice model," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 146-161.
    11. Marzano, Vittorio, 2014. "A simple procedure for the calculation of the covariances of any Generalized Extreme Value model," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 151-162.
    12. Drabas, Tomasz & Wu, Cheng-Lung, 2013. "Modelling air carrier choices with a Segment Specific Cross Nested Logit model," Journal of Air Transport Management, Elsevier, vol. 32(C), pages 8-16.
    13. Stephane Hess & Denis Bolduc & John Polak, 2010. "Random covariance heterogeneity in discrete choice models," Transportation, Springer, vol. 37(3), pages 391-411, May.
    14. Bhat, Chandra R. & Guo, Jessica, 2004. "A mixed spatially correlated logit model: formulation and application to residential choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 147-168, February.
    15. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    16. Gopalakrishnan, Raja & Guevara, C. Angelo & Ben-Akiva, Moshe, 2020. "Combining multiple imputation and control function methods to deal with missing data and endogeneity in discrete-choice models," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 45-57.
    17. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    18. Peter Davis & Pasquale Schiraldi, 2014. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," RAND Journal of Economics, RAND Corporation, vol. 45(1), pages 32-63, March.
    19. Newman, Jeffrey P. & Lurkin, Virginie & Garrow, Laurie A., 2018. "Computational methods for estimating multinomial, nested, and cross-nested logit models that account for semi-aggregate data," Journal of choice modelling, Elsevier, vol. 26(C), pages 28-40.
    20. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2015. "Accommodating taste heterogeneity and desired substitution pattern in exit choices of pedestrian crowd evacuees using a mixed nested logit model," Journal of choice modelling, Elsevier, vol. 16(C), pages 58-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:161:y:2022:i:c:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.