The Proper Use of Google Trends in Forecasting Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Laurent Ferrara & Anna Simoni, 2023.
"When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
- Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working papers 717, Banque de France.
- Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Post-Print hal-03919944, HAL.
- Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers 2019-04, Center for Research in Economics and Statistics.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Papers 2007.00273, arXiv.org, revised Sep 2022.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers hal-04159714, HAL.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," EconomiX Working Papers 2020-11, University of Paris Nanterre, EconomiX.
- Vicente, María Rosalía & López-Menéndez, Ana J. & Pérez, Rigoberto, 2015. "Forecasting unemployment with internet search data: Does it help to improve predictions when job destruction is skyrocketing?," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 132-139.
- Nicolas Woloszko, 2020. "Tracking activity in real time with Google Trends," OECD Economics Department Working Papers 1634, OECD Publishing.
- Scott R. Baker & Andrey Fradkin, 2017. "The Impact of Unemployment Insurance on Job Search: Evidence from Google Search Data," The Review of Economics and Statistics, MIT Press, vol. 99(5), pages 756-768, December.
- Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021.
"Nowcasting GDP using machine-learning algorithms: A real-time assessment,"
International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2019. "Nowcasting New Zealand GDP using machine learning algorithms," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2018. "Nowcasting New Zealand GDP using machine learning algorithms," CAMA Working Papers 2018-47, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Cleo Anastassopoulou & Lucia Russo & Athanasios Tsakris & Constantinos Siettos, 2020. "Data-based analysis, modelling and forecasting of the COVID-19 outbreak," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
- Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021.
"Nowcasting GDP using machine-learning algorithms: A real-time assessment,"
International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2019. "Nowcasting GDP using machine learning algorithms: A real-time assessment," Reserve Bank of New Zealand Discussion Paper Series DP2019/03, Reserve Bank of New Zealand.
- Sebastian Doerr & Leonardo Gambacorta, 2020. "Identifying regions at risk with Google Trends: the impact of Covid-19 on US labour markets," BIS Bulletins 8, Bank for International Settlements.
- Mr. Futoshi Narita & Rujun Yin, 2018. "In Search of Information: Use of Google Trends’ Data to Narrow Information Gaps for Low-income Developing Countries," IMF Working Papers 2018/286, International Monetary Fund.
- Naccarato, Alessia & Falorsi, Stefano & Loriga, Silvia & Pierini, Andrea, 2018. "Combining official and Google Trends data to forecast the Italian youth unemployment rate," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 114-122.
- Concha Artola & Enrique Galán, 2012. "Tracking the future on the web: construction of leading indicators using internet searches," Occasional Papers 1203, Banco de España.
- de Carvalho, Miguel & Rua, António, 2017.
"Real-time nowcasting the US output gap: Singular spectrum analysis at work,"
International Journal of Forecasting, Elsevier, vol. 33(1), pages 185-198.
- António Rua & Miguel de Carvalho, 2014. "Real-time nowcasting the US output gap: Singular spectrum analysis at work," Working Papers w201416, Banco de Portugal, Economics and Research Department.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Atin Aboutorabi & Ga'etan de Rassenfosse, 2024. "Nowcasting R&D Expenditures: A Machine Learning Approach," Papers 2407.11765, arXiv.org.
- Christine Dauth & Julia Lang, 2024. "Continuing vocational training in times of economic uncertainty: an event-study analysis in real time," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 58(1), pages 1-23, December.
- Cebrián, Eduardo & Domenech, Josep, 2024. "Addressing Google Trends inconsistencies," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
- Ciner, Cetin & Lucey, Brian & Yarovaya, Larisa, 2022. "Determinants of cryptocurrency returns: A LASSO quantile regression approach," Finance Research Letters, Elsevier, vol. 49(C).
- Bantis, Evripidis & Clements, Michael P. & Urquhart, Andrew, 2023. "Forecasting GDP growth rates in the United States and Brazil using Google Trends," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1909-1924.
- Takashi Nakazawa, 2022. "Constructing GDP Nowcasting Models Using Alternative Data," Bank of Japan Working Paper Series 22-E-9, Bank of Japan.
- Lolić, Ivana & Matošec, Marina & Sorić, Petar, 2024. "DIY google trends indicators in social sciences: A methodological note," Technology in Society, Elsevier, vol. 77(C).
- Geri Skenderi & Christian Joppi & Matteo Denitto & Marco Cristani, 2024. "Well googled is half done: Multimodal forecasting of new fashion product sales with image‐based google trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1982-1997, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nicolas Woloszko, 2020. "Tracking activity in real time with Google Trends," OECD Economics Department Working Papers 1634, OECD Publishing.
- Lolić, Ivana & Matošec, Marina & Sorić, Petar, 2024. "DIY google trends indicators in social sciences: A methodological note," Technology in Society, Elsevier, vol. 77(C).
- Cebrián, Eduardo & Domenech, Josep, 2024. "Addressing Google Trends inconsistencies," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
- Rudrani Bhattacharya & Bornali Bhandari & Sudipto Mundle, 2023. "Nowcasting India’s Quarterly GDP Growth: A Factor-Augmented Time-Varying Coefficient Regression Model (FA-TVCRM)," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 213-234, March.
- Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
- Yanqing Yang & Xingcheng Xu & Jinfeng Ge & Yan Xu, 2024. "Machine Learning for Economic Forecasting: An Application to China's GDP Growth," Papers 2407.03595, arXiv.org.
- Alexander Jaax & Annabelle Mourougane & Frederic Gonzales, 2024. "Nowcasting services trade for the G7 economies," The World Economy, Wiley Blackwell, vol. 47(4), pages 1336-1386, April.
- Huaqing Xie & Xingcheng Xu & Fangjia Yan & Xun Qian & Yanqing Yang, 2024. "Deep Learning for Multi-Country GDP Prediction: A Study of Model Performance and Data Impact," Papers 2409.02551, arXiv.org.
- Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2024.
"Lessons from nowcasting GDP across the world,"
Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 8, pages 187-217,
Edward Elgar Publishing.
- Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2023. "Lessons from Nowcasting GDP across the World," International Finance Discussion Papers 1385, Board of Governors of the Federal Reserve System (U.S.).
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2023.
"Testing big data in a big crisis: Nowcasting under Covid-19,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1548-1563.
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2022. "Testing big data in a big crisis: Nowcasting under COVID-19," JRC Working Papers in Economics and Finance 2022-06, Joint Research Centre, European Commission.
- Sabyasachi Kar & Amaani Bashir & Mayank Jain, 2021. "New Approaches to Forecasting Growth and Inflation: Big Data and Machine Learning," IEG Working Papers 446, Institute of Economic Growth.
- Alina Stundziene & Vaida Pilinkiene & Jurgita Bruneckiene & Andrius Grybauskas & Mantas Lukauskas & Irena Pekarskiene, 2024. "Future directions in nowcasting economic activity: A systematic literature review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(4), pages 1199-1233, September.
- Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
- James Chapman & Ajit Desai, 2021. "Using Payments Data to Nowcast Macroeconomic Variables During the Onset of COVID-19," Staff Working Papers 21-2, Bank of Canada.
- Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
- Marijn A. Bolhuis & Brett Rayner, 2020. "The More the Merrier? A Machine Learning Algorithm for Optimal Pooling of Panel Data," IMF Working Papers 2020/044, International Monetary Fund.
- Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
- Ofori, Isaac Kwesi, 2021.
"Catching The Drivers of Inclusive Growth in Sub-Saharan Africa: An Application of Machine Learning,"
EconStor Preprints
235482, ZBW - Leibniz Information Centre for Economics.
- Isaac K. Ofori, 2021. "Catching the Drivers of Inclusive Growth in Sub-Saharan Africa: An Application of Machine Learning," Working Papers 21/044, European Xtramile Centre of African Studies (EXCAS).
- Ofori, Isaac K, 2021. "Catching The Drivers of Inclusive Growth In Sub-Saharan Africa: An Application of Machine Learning," MPRA Paper 108622, University Library of Munich, Germany.
- Isaac K. Ofori, 2021. "Catching the Drivers of Inclusive Growth in Sub-Saharan Africa: An Application of Machine Learning," Research Africa Network Working Papers 21/044, Research Africa Network (RAN).
- Isaac K. Ofori, 2021. "Catching the Drivers of Inclusive Growth in Sub-Saharan Africa: An Application of Machine Learning," Working Papers of the African Governance and Development Institute. 21/044, African Governance and Development Institute..
- Abay,Kibrom A. & Hirfrfot,Kibrom Tafere & Woldemichael,Andinet, 2020. "Winners and Losers from COVID-19 : Global Evidence from Google Search," Policy Research Working Paper Series 9268, The World Bank.
- Holtemöller, Oliver & Kozyrev, Boris, 2023. "Forecasting Economic Activity with a Neural Network in Uncertain Times: Monte Carlo Evidence and Application to German GDP," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277688, Verein für Socialpolitik / German Economic Association.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2021-04-12 (Econometrics)
- NEP-FOR-2021-04-12 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2104.03065. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.