IDEAS home Printed from https://ideas.repec.org/p/sek/iefpro/14115967.html
   My bibliography  Save this paper

Macroeconomic Forecasting Using Machine Learning: A Case of Slovakia

Author

Listed:
  • Ádám Csápai

    (University of Economics in Bratislava)

Abstract

We assess the forecasting performance of the selected machine learning methods. According to previous research, they can enhance short-term forecasting performance. We forecast industrial production, inflation and unemployment in Slovakia. We compare the forecasting performance of the models using the mean absolute error and root-mean-squared error. We forecast the variables using ensemble machine learning techniques, such as random forest, bagging and boosting. Additionally, we explore regularized least squares models, such as ridge regression, lasso regression, and elastic net models. Finally, we examine the forecasting performance of neural networks and compare the mean and trimmed mean of model forecasts with individual model performance. Our findings affirm that these methods can enhance forecast accuracy of short-term forecasts, particularly when a relatively large dataset is available. Individual machine learning models prove themselves to be even more accurate than the averages of model forecasts.

Suggested Citation

  • Ádám Csápai, 0000. "Macroeconomic Forecasting Using Machine Learning: A Case of Slovakia," Proceedings of Economics and Finance Conferences 14115967, International Institute of Social and Economic Sciences.
  • Handle: RePEc:sek:iefpro:14115967
    as

    Download full text from publisher

    File URL: https://iises.net/proceedings/international-conference-on-economics-finance-and-business-prague-2023-1/table-of-content/detail?cid=141&iid=005&rid=15967
    File Function: First version, 0000
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Inoue, Atsushi & Kilian, Lutz, 2008. "How Useful Is Bagging in Forecasting Economic Time Series? A Case Study of U.S. Consumer Price Inflation," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 511-522, June.
    2. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
    3. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
    4. Yutaka Kurihara & Akio Fukushima, 2019. "AR Model or Machine Learning for Forecasting GDP and Consumer Price for G7 Countries," Applied Economics and Finance, Redfame publishing, vol. 6(3), pages 1-6, May.
    5. Clements, Michael P. & Hendry, David F. (ed.), 2011. "The Oxford Handbook of Economic Forecasting," OUP Catalogue, Oxford University Press, number 9780195398649.
    6. Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
    7. Kohei Maehashi & Mototsugu Shintani, 2020. "Macroeconomic Forecasting Using Factor Models and Machine Learning: An Application to Japan," CIRJE F-Series CIRJE-F-1146, CIRJE, Faculty of Economics, University of Tokyo.
    8. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    9. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
    2. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
    3. Juan Tenorio & Wilder Perez, 2024. "Monthly GDP nowcasting with Machine Learning and Unstructured Data," Papers 2402.04165, arXiv.org.
    4. James Chapman & Ajit Desai, 2021. "Using Payments Data to Nowcast Macroeconomic Variables During the Onset of COVID-19," Staff Working Papers 21-2, Bank of Canada.
    5. Samuel N. Cohen & Silvia Lui & Will Malpass & Giulia Mantoan & Lars Nesheim & 'Aureo de Paula & Andrew Reeves & Craig Scott & Emma Small & Lingyi Yang, 2023. "Nowcasting with signature methods," Papers 2305.10256, arXiv.org.
    6. Jaehyun Yoon, 2021. "Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 247-265, January.
    7. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    8. Isaac K. Ofori & Camara K. Obeng & Simplice A. Asongu, 2024. "What Really Drives Economic Growth in Sub-Saharan Africa? Evidence from the Lasso Regularization and Inferential Techniques," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 144-179, March.
    9. Alexander Jaax & Annabelle Mourougane & Frederic Gonzales, 2024. "Nowcasting services trade for the G7 economies," The World Economy, Wiley Blackwell, vol. 47(4), pages 1336-1386, April.
    10. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
    11. Maehashi, Kohei & Shintani, Mototsugu, 2020. "Macroeconomic forecasting using factor models and machine learning: an application to Japan," Journal of the Japanese and International Economies, Elsevier, vol. 58(C).
    12. Silva, Thiago Christiano & Wilhelm, Paulo Victor Berri & Amancio, Diego R., 2024. "Machine learning and economic forecasting: The role of international trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
    13. Pijush Kanti Das & Prabir Kumar Das, 2024. "Forecasting and Analyzing Predictors of Inflation Rate: Using Machine Learning Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 22(2), pages 493-517, June.
    14. Tamara, Novian & Dwi Muchisha, Nadya & Andriansyah, Andriansyah & Soleh, Agus M, 2020. "Nowcasting Indonesia’s GDP Growth Using Machine Learning Algorithms," MPRA Paper 105235, University Library of Munich, Germany.
    15. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    16. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    17. Marijn A. Bolhuis & Brett Rayner, 2020. "The More the Merrier? A Machine Learning Algorithm for Optimal Pooling of Panel Data," IMF Working Papers 2020/044, International Monetary Fund.
    18. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    19. Sungchul Park & Anirban Basu, 2018. "Alternative evaluation metrics for risk adjustment methods," Health Economics, John Wiley & Sons, Ltd., vol. 27(6), pages 984-1010, June.
    20. Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2022. "The Anatomy of Out-of-Sample Forecasting Accuracy," FRB Atlanta Working Paper 2022-16, Federal Reserve Bank of Atlanta.

    More about this item

    Keywords

    Economic forecasting; Slovakia; Ensemble machine learning; Regularized least squares; Neural networks;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sek:iefpro:14115967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klara Cermakova (email available below). General contact details of provider: https://iises.net/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.