Nowcasting Indonesia’s GDP Growth Using Machine Learning Algorithms
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
- Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021.
"Nowcasting GDP using machine-learning algorithms: A real-time assessment,"
International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2019. "Nowcasting New Zealand GDP using machine learning algorithms," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2018. "Nowcasting New Zealand GDP using machine learning algorithms," CAMA Working Papers 2018-47, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021.
"Nowcasting GDP using machine-learning algorithms: A real-time assessment,"
International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2019. "Nowcasting GDP using machine learning algorithms: A real-time assessment," Reserve Bank of New Zealand Discussion Paper Series DP2019/03, Reserve Bank of New Zealand.
- Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- James Chapman & Ajit Desai, 2021. "Using Payments Data to Nowcast Macroeconomic Variables During the Onset of COVID-19," Staff Working Papers 21-2, Bank of Canada.
- Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021.
"Nowcasting GDP using machine-learning algorithms: A real-time assessment,"
International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2019. "Nowcasting New Zealand GDP using machine learning algorithms," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2018. "Nowcasting New Zealand GDP using machine learning algorithms," CAMA Working Papers 2018-47, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
- Samuel N. Cohen & Silvia Lui & Will Malpass & Giulia Mantoan & Lars Nesheim & 'Aureo de Paula & Andrew Reeves & Craig Scott & Emma Small & Lingyi Yang, 2023. "Nowcasting with signature methods," Papers 2305.10256, arXiv.org.
- Alexander Jaax & Annabelle Mourougane & Frederic Gonzales, 2024. "Nowcasting services trade for the G7 economies," The World Economy, Wiley Blackwell, vol. 47(4), pages 1336-1386, April.
- Ádám Csápai, 0000. "Macroeconomic Forecasting Using Machine Learning: A Case of Slovakia," Proceedings of Economics and Finance Conferences 14115967, International Institute of Social and Economic Sciences.
- Isaac K. Ofori & Camara K. Obeng & Simplice A. Asongu, 2024.
"What Really Drives Economic Growth in Sub-Saharan Africa? Evidence from the Lasso Regularization and Inferential Techniques,"
Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 144-179, March.
- Isaac K. Ofori & Camara K. Obeng & Simplice A. Asongu, 2022. "What Really Drives Economic Growth in Sub-Saharan Africa? Evidence from The Lasso Regularization and Inferential Techniques," Working Papers 22/061, European Xtramile Centre of African Studies (EXCAS).
- Isaac K. Ofori & Camara K. Obeng & Simplice A. Asongu, 2022. "What Really Drives Economic Growth in Sub-Saharan Africa? Evidence from The Lasso Regularization and Inferential Techniques," Working Papers of the African Governance and Development Institute. 22/061, African Governance and Development Institute..
- Juan Tenorio & Wilder Perez, 2024. "Monthly GDP nowcasting with Machine Learning and Unstructured Data," Papers 2402.04165, arXiv.org.
- Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
- Silva, Thiago Christiano & Wilhelm, Paulo Victor Berri & Amancio, Diego R., 2024.
"Machine learning and economic forecasting: The role of international trade networks,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
- Thiago Christiano Silva & Paulo Victor Berri Wilhelm & Diego Raphael Amancio, 2024. "Machine Learning and Economic Forecasting: the role of international trade networks," Working Papers Series 597, Central Bank of Brazil, Research Department.
- Thiago C. Silva & Paulo V. B. Wilhelm & Diego R. Amancio, 2024. "Machine learning and economic forecasting: the role of international trade networks," Papers 2404.08712, arXiv.org.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Diebold, Francis X. & Shin, Minchul, 2019.
"Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
- Francis X. Diebold & Minchul Shin, 2018. "Machine Learning for Regularized Survey Forecast Combination: Partially-Egalitarian Lasso and its Derivatives," NBER Working Papers 24967, National Bureau of Economic Research, Inc.
- Francis X. Diebold & Minchul Shin, 2018. "Machine Learning for Regularized Survey Forecast Combination: Partially Egalitarian Lasso and its Derivatives," PIER Working Paper Archive 18-014, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 17 Aug 2018.
- Zhang, Hongwei & Zhao, Xinyi & Gao, Wang & Niu, Zibo, 2023. "The role of higher moments in predicting China's oil futures volatility: Evidence from machine learning models," Journal of Commodity Markets, Elsevier, vol. 32(C).
- Jin-Kyu Jung & Manasa Patnam & Anna Ter-Martirosyan, 2018. "An Algorithmic Crystal Ball: Forecasts-based on Machine Learning," IMF Working Papers 2018/230, International Monetary Fund.
- Pierre Dodin & Jingyi Xiao & Yossiri Adulyasak & Neda Etebari Alamdari & Lea Gauthier & Philippe Grangier & Paul Lemaitre & William L. Hamilton, 2023. "Bombardier Aftermarket Demand Forecast with Machine Learning," Interfaces, INFORMS, vol. 53(6), pages 425-445, November.
- Bluwstein, Kristina & Buckmann, Marcus & Joseph, Andreas & Kapadia, Sujit & Şimşek, Özgür, 2023.
"Credit growth, the yield curve and financial crisis prediction: Evidence from a machine learning approach,"
Journal of International Economics, Elsevier, vol. 145(C).
- Bluwstein, Kristina & Buckmann, Marcus & Joseph, Andreas & Kang, Miao & Kapadia, Sujit & Simsek, Özgür, 2020. "Credit growth, the yield curve and financial crisis prediction: evidence from a machine learning approach," Bank of England working papers 848, Bank of England.
- Bluwstein, Kristina & Buckmann, Marcus & Joseph, Andreas & Kapadia, Sujit & Şimşek, Özgür, 2021. "Credit growth, the yield curve and financial crisis prediction: evidence from a machine learning approach," Working Paper Series 2614, European Central Bank.
- Lycheva, Maria & Mironenkov, Alexey & Kurbatskii, Alexey & Fantazzini, Dean, 2022.
"Forecasting oil prices with penalized regressions, variance risk premia and Google data,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 68, pages 28-49.
- Fantazzini, Dean & Kurbatskii, Alexey & Mironenkov, Alexey & Lycheva, Maria, 2022. "Forecasting oil prices with penalized regressions, variance risk premia and Google data," MPRA Paper 118239, University Library of Munich, Germany.
- Lu, Xinjie & Ma, Feng & Xu, Jin & Zhang, Zehui, 2022. "Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Kim, Hyun Hak & Swanson, Norman R., 2014.
"Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence,"
Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
- Huyn Hak Kim & Norman R. Swanson, 2011. "Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence," Departmental Working Papers 201119, Rutgers University, Department of Economics.
More about this item
Keywords
Nowcasting; Indonesian GDP; Machine Learning;All these keywords.
JEL classification:
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)
- O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-01-25 (Big Data)
- NEP-CMP-2021-01-25 (Computational Economics)
- NEP-FOR-2021-01-25 (Forecasting)
- NEP-MAC-2021-01-25 (Macroeconomics)
- NEP-SEA-2021-01-25 (South East Asia)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:105235. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.