Fitted Value Iteration Methods for Bicausal Optimal Transport
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglböck & Manu Eder, 2020. "Adapted Wasserstein distances and stability in mathematical finance," Finance and Stochastics, Springer, vol. 24(3), pages 601-632, July.
- Alois Pichler & Michael Weinhardt, 2022. "The nested Sinkhorn divergence to learn the nested distance," Computational Management Science, Springer, vol. 19(2), pages 269-293, June.
- Tobias Achterberg & Robert E. Bixby & Zonghao Gu & Edward Rothberg & Dieter Weninger, 2020. "Presolve Reductions in Mixed Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 473-506, April.
- Langer, Sophie, 2021. "Approximating smooth functions by deep neural networks with sigmoid activation function," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
- Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglbock & Manu Eder, 2019. "Adapted Wasserstein Distances and Stability in Mathematical Finance," Papers 1901.07450, arXiv.org, revised May 2020.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.
- Nicolas Boursin & Carl Remlinger & Joseph Mikael & Carol Anne Hargreaves, 2022. "Deep Generators on Commodity Markets; application to Deep Hedging," Papers 2205.13942, arXiv.org.
- Julio Backhoff-Veraguas & Xin Zhang, 2023. "Dynamic Cournot-Nash equilibrium: the non-potential case," Mathematics and Financial Economics, Springer, volume 17, number 1, March.
- Beatrice Acciaio & Julio Backhoff & Gudmund Pammer, 2022. "Quantitative Fundamental Theorem of Asset Pricing," Papers 2209.15037, arXiv.org, revised Jan 2024.
- Michael Kupper & Max Nendel & Alessandro Sgarabottolo, 2023. "Risk measures based on weak optimal transport," Papers 2312.05973, arXiv.org.
- Benjamin Jourdain & Gudmund Pammer, 2023. "An extension of martingale transport and stability in robust finance," Papers 2304.09551, arXiv.org.
- Bingyan Han, 2022. "Distributionally robust risk evaluation with a causality constraint and structural information," Papers 2203.10571, arXiv.org, revised Aug 2024.
- Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.
- Nathan Sauldubois & Nizar Touzi, 2024. "First order Martingale model risk and semi-static hedging," Papers 2410.06906, arXiv.org.
- Beatrice Acciaio & Mathias Beiglboeck & Gudmund Pammer, 2020. "Weak Transport for Non-Convex Costs and Model-independence in a Fixed-Income Market," Papers 2011.04274, arXiv.org, revised Aug 2023.
- Beatrice Acciaio & Daniel Krv{s}ek & Gudmund Pammer, 2024. "Multicausal transport: barycenters and dynamic matching," Papers 2401.12748, arXiv.org.
- Julio Backhoff-Veraguas & Gudmund Pammer & Walter Schachermayer, 2024. "The Gradient Flow of the Bass Functional in Martingale Optimal Transport," Papers 2407.18781, arXiv.org.
- Nicolas Boursin & Carl Remlinger & Joseph Mikael, 2022. "Deep Generators on Commodity Markets Application to Deep Hedging," Risks, MDPI, vol. 11(1), pages 1-18, December.
- Mathias Beiglbock & Gudmund Pammer & Lorenz Riess, 2024. "Change of numeraire for weak martingale transport," Papers 2406.07523, arXiv.org.
- Erhan Bayraktar & Leonid Dolinskyi & Yan Dolinsky, 2020.
"Extended weak convergence and utility maximisation with proportional transaction costs,"
Finance and Stochastics, Springer, vol. 24(4), pages 1013-1034, October.
- Erhan Bayraktar & Leonid Dolinskyi & Yan Dolinsky, 2019. "Extended Weak Convergence and Utility Maximization with Proportional Transaction Costs," Papers 1912.08863, arXiv.org, revised Jul 2020.
- Beatrice Acciaio & Julio Backhoff-Veraguas & Junchao Jia, 2020. "Cournot-Nash equilibrium and optimal transport in a dynamic setting," Papers 2002.08786, arXiv.org, revised Nov 2020.
- John Armstrong & Andrei Ionescu, 2023. "Gamma Hedging and Rough Paths," Papers 2309.05054, arXiv.org, revised Mar 2024.
- Cohen, Asaf & Saha, Subhamay, 2021. "Asymptotic optimality of the generalized cμ rule under model uncertainty," Stochastic Processes and their Applications, Elsevier, vol. 136(C), pages 206-236.
- Daniel Krv{s}ek & Gudmund Pammer, 2024. "General duality and dual attainment for adapted transport," Papers 2401.11958, arXiv.org, revised Nov 2024.
- Daniel Bartl & Johannes Wiesel, 2022. "Sensitivity of multiperiod optimization problems in adapted Wasserstein distance," Papers 2208.05656, arXiv.org, revised Jun 2023.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.12658. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.