A dynamic programming principle for multiperiod control problems with bicausal constraints
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Laurence Carassus & Jan Obloj & Johannes Wiesel, 2018. "The robust superreplication problem: a dynamic approach," Papers 1812.11201, arXiv.org, revised Feb 2019.
- Veraguas, Julio Backhoff & Beiglböck, Mathias & Eder, Manu & Pichler, Alois, 2020. "Fundamental properties of process distances," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5575-5591.
- Daniel Bartl & Samuel Drapeau & Jan Obloj & Johannes Wiesel, 2020. "Sensitivity analysis of Wasserstein distributionally robust optimization problems," Papers 2006.12022, arXiv.org, revised Nov 2021.
- Erhan Bayraktar & Zhou Zhou, 2017.
"On Arbitrage And Duality Under Model Uncertainty And Portfolio Constraints,"
Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 988-1012, October.
- Erhan Bayraktar & Zhou Zhou, 2014. "On Arbitrage and Duality under Model Uncertainty and Portfolio Constraints," Papers 1402.2596, arXiv.org, revised Mar 2015.
- Marcel Nutz, 2016. "Utility Maximization Under Model Uncertainty In Discrete Time," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 252-268, April.
- Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglböck & Manu Eder, 2020. "Adapted Wasserstein distances and stability in mathematical finance," Finance and Stochastics, Springer, vol. 24(3), pages 601-632, July.
- Wolfram Wiesemann & Daniel Kuhn & Berç Rustem, 2013. "Robust Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 153-183, February.
- Ariel Neufeld & Mario Sikic, 2016. "Robust Utility Maximization in Discrete-Time Markets with Friction," Papers 1610.09230, arXiv.org, revised May 2018.
- Romain Blanchard & Laurence Carassus, 2018. "Multiple-Priors Optimal Investment In Discrete Time For Unbounded Utility Function," Working Papers hal-01883787, HAL.
- Daniel Bartl & Samuel Drapeau & Ludovic Tangpi, 2020. "Computational aspects of robust optimized certainty equivalents and option pricing," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 287-309, January.
- Garud N. Iyengar, 2005. "Robust Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 257-280, May.
- Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglbock & Manu Eder, 2019. "Adapted Wasserstein Distances and Stability in Mathematical Finance," Papers 1901.07450, arXiv.org, revised May 2020.
- Nathan Sauldubois & Nizar Touzi, 2024. "First order Martingale model risk and semi-static hedging," Papers 2410.06906, arXiv.org.
- Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
- Alexander Shapiro, 2016. "Rectangular Sets of Probability Measures," Operations Research, INFORMS, vol. 64(2), pages 528-541, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jonas Blessing & Michael Kupper & Alessandro Sgarabottolo, 2024. "Discrete approximation of risk-based prices under volatility uncertainty," Papers 2411.00713, arXiv.org.
- Ariel Neufeld & Matthew Ng Cheng En & Ying Zhang, 2024. "Robust SGLD algorithm for solving non-convex distributionally robust optimisation problems," Papers 2403.09532, arXiv.org.
- Michael Kupper & Max Nendel & Alessandro Sgarabottolo, 2023. "Risk measures based on weak optimal transport," Papers 2312.05973, arXiv.org.
- Bingyan Han, 2022. "Distributionally robust risk evaluation with a causality constraint and structural information," Papers 2203.10571, arXiv.org, revised Aug 2024.
- Fuhrmann, Sven & Kupper, Michael & Nendel, Max, 2021. "Wasserstein Perturbations of Markovian Transition Semigroups," Center for Mathematical Economics Working Papers 649, Center for Mathematical Economics, Bielefeld University.
- David Criens & Lars Niemann, 2023. "Robust utility maximization with nonlinear continuous semimartingales," Mathematics and Financial Economics, Springer, volume 17, number 5, December.
- Ariel Neufeld & Julian Sester, 2024. "Non-concave distributionally robust stochastic control in a discrete time finite horizon setting," Papers 2404.05230, arXiv.org.
- Daniel Bartl & Johannes Wiesel, 2022. "Sensitivity of multiperiod optimization problems in adapted Wasserstein distance," Papers 2208.05656, arXiv.org, revised Jun 2023.
- Shuoqing Deng & Xiaolu Tan & Xiang Yu, 2020. "Utility Maximization with Proportional Transaction Costs Under Model Uncertainty," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1210-1236, November.
- Jan Obłój & Johannes Wiesel, 2021. "A unified framework for robust modelling of financial markets in discrete time," Finance and Stochastics, Springer, vol. 25(3), pages 427-468, July.
- Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
- H'el`ene Halconruy, 2021. "The insider problem in the trinomial model: a discrete-time jump process approach," Papers 2106.15208, arXiv.org, revised Sep 2023.
- Xin, Linwei & Goldberg, David A., 2021. "Time (in)consistency of multistage distributionally robust inventory models with moment constraints," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1127-1141.
- Huy N. Chau & Miklós Rásonyi, 2019. "Robust utility maximisation in markets with transaction costs," Finance and Stochastics, Springer, vol. 23(3), pages 677-696, July.
- Jan Obłój & Johannes Wiesel, 2021. "Distributionally robust portfolio maximization and marginal utility pricing in one period financial markets," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1454-1493, October.
- Cohen, Asaf & Saha, Subhamay, 2021. "Asymptotic optimality of the generalized cμ rule under model uncertainty," Stochastic Processes and their Applications, Elsevier, vol. 136(C), pages 206-236.
- Laurence Carassus & Johannes Wiesel, 2023. "Strategies with minimal norm are optimal for expected utility maximization under high model ambiguity," Papers 2306.01503, arXiv.org, revised Jan 2024.
- Daniel Bartl & Stephan Eckstein & Michael Kupper, 2020. "Limits of random walks with distributionally robust transition probabilities," Papers 2007.08815, arXiv.org, revised Apr 2021.
- Bartl, Daniel, 2020. "Conditional nonlinear expectations," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 785-805.
- Romain Blanchard & Laurence Carassus, 2021. "Convergence of utility indifference prices to the superreplication price in a multiple‐priors framework," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 366-398, January.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.23927. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.