Approximating smooth functions by deep neural networks with sigmoid activation function
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2020.104696
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kohler, Michael, 2014. "Optimal global rates of convergence for noiseless regression estimation problems with adaptively chosen design," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 197-208.
- David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Soham Sarkar & Victor M. Panaretos, 2022. "CovNet: Covariance networks for functional data on multidimensional domains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1785-1820, November.
- Belomestny, Denis & Goldman, Artur & Naumov, Alexey & Samsonov, Sergey, 2024. "Theoretical guarantees for neural control variates in MCMC," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 382-405.
- Li Li & Jiahui Yu & Hang Cheng & Miaojuan Peng, 2021. "A Smart Helmet-Based PLS-BPNN Error Compensation Model for Infrared Body Temperature Measurement of Construction Workers during COVID-19," Mathematics, MDPI, vol. 9(21), pages 1-20, November.
- Tomasz Tietze & Piotr Szulc & Daniel Smykowski & Andrzej Sitka & Romuald Redzicki, 2021. "Application of Phase Change Material and Artificial Neural Networks for Smoothing of Heat Flux Fluctuations," Energies, MDPI, vol. 14(12), pages 1-17, June.
- Francesca Mandel & Riddhi Pratim Ghosh & Ian Barnett, 2023. "Neural networks for clustered and longitudinal data using mixed effects models," Biometrics, The International Biometric Society, vol. 79(2), pages 711-721, June.
- Leogrande, Angelo, 2024.
"From Discounts to Delivery: Decoding Customer Care Interactions in Warehousing,"
MPRA Paper
122693, University Library of Munich, Germany.
- Leogrande, Angelo, 2024. "From Discounts to Delivery: Decoding Customer Care Interactions in Warehousing," SocArXiv qzm5v, Center for Open Science.
- Erhan Bayraktar & Bingyan Han, 2023. "Fitted Value Iteration Methods for Bicausal Optimal Transport," Papers 2306.12658, arXiv.org, revised Nov 2023.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
- Nathan Companez & Aldeida Aleti, 2016. "Can Monte-Carlo Tree Search learn to sacrifice?," Journal of Heuristics, Springer, vol. 22(6), pages 783-813, December.
- Zhewei Zhang & Youngjin Yoo & Kalle Lyytinen & Aron Lindberg, 2021. "The Unknowability of Autonomous Tools and the Liminal Experience of Their Use," Information Systems Research, INFORMS, vol. 32(4), pages 1192-1213, December.
- Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
- Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
- Li Xia, 2020. "Risk‐Sensitive Markov Decision Processes with Combined Metrics of Mean and Variance," Production and Operations Management, Production and Operations Management Society, vol. 29(12), pages 2808-2827, December.
- Neha Soni & Enakshi Khular Sharma & Narotam Singh & Amita Kapoor, 2019. "Impact of Artificial Intelligence on Businesses: from Research, Innovation, Market Deployment to Future Shifts in Business Models," Papers 1905.02092, arXiv.org.
- Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
- Taejong Joo & Hyunyoung Jun & Dongmin Shin, 2022. "Task Allocation in Human–Machine Manufacturing Systems Using Deep Reinforcement Learning," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
- Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2022.
"Voting: A machine learning approach,"
European Journal of Operational Research, Elsevier, vol. 299(3), pages 1003-1017.
- Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2020. "Voting: A machine learning approach," Working Paper Series in Economics 145, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Oleh Lukianykhin & Tetiana Bogodorova, 2021. "Voltage Control-Based Ancillary Service Using Deep Reinforcement Learning," Energies, MDPI, vol. 14(8), pages 1-22, April.
- De Bruyn, Arnaud & Viswanathan, Vijay & Beh, Yean Shan & Brock, Jürgen Kai-Uwe & von Wangenheim, Florian, 2020. "Artificial Intelligence and Marketing: Pitfalls and Opportunities," Journal of Interactive Marketing, Elsevier, vol. 51(C), pages 91-105.
- Zhimian Chen & Yizeng Wang & Hao Hu & Zhipeng Zhang & Chengwei Zhang & Shukun Zhou, 2024. "Investigating Autonomous Vehicle Driving Strategies in Highway Ramp Merging Zones," Mathematics, MDPI, vol. 12(23), pages 1-22, December.
- Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
- Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).
- Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
- Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
- Haoran Wang & Xun Yu Zhou, 2020. "Continuous‐time mean–variance portfolio selection: A reinforcement learning framework," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1273-1308, October.
- Keller, Alexander & Dahm, Ken, 2019. "Integral equations and machine learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 2-12.
- Jesús Fernández-Villaverde & Galo Nuño & Jesse Perla, 2024.
"Taming the Curse of Dimensionality: Quantitative Economics with Deep Learning,"
NBER Working Papers
33117, National Bureau of Economic Research, Inc.
- Jesús Fernández-Villaverde & Galo Nuño & Jesse Perla, 2024. "Taming the curse of dimensionality: quantitative economics with deep learning," Working Papers 2444, Banco de España.
- Jesús Fernández-Villaverde & Galo Nuno & Jesse Perla, 2024. "Taming the Curse of Dimensionality:Quantitative Economics with Deep Learning," PIER Working Paper Archive 24-034, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Jésus Fernández-Villaverde & Galo Nuño & Jesse Perla & Jesús Fernández-Villaverde, 2024. "Taming the Curse of Dimensionality: Quantitative Economics with Deep Learning," CESifo Working Paper Series 11448, CESifo.
More about this item
Keywords
Deep learning; Full connectivity; Neural networks; Uniform approximation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:182:y:2021:i:c:s0047259x20302773. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.