IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.18781.html
   My bibliography  Save this paper

The Gradient Flow of the Bass Functional in Martingale Optimal Transport

Author

Listed:
  • Julio Backhoff-Veraguas
  • Gudmund Pammer
  • Walter Schachermayer

Abstract

Given $\mu$ and $\nu$, probability measures on $\mathbb R^d$ in convex order, a Bass martingale is arguably the most natural martingale starting with law $\mu$ and finishing with law $\nu$. Indeed, this martingale is obtained by stretching a reference Brownian motion so as to meet the data $\mu,\nu$. Unless $\mu$ is a Dirac, the existence of a Bass martingale is a delicate subject, since for instance the reference Brownian motion must be allowed to have a non-trivial initial distribution $\alpha$, not known in advance. Thus the key to obtaining the Bass martingale, theoretically as well as practically, lies in finding $\alpha$. In \cite{BaSchTsch23} it has been shown that $\alpha$ is determined as the minimizer of the so-called Bass functional. In the present paper we propose to minimize this functional by following its gradient flow, or more precisely, the gradient flow of its $L^2$-lift. In our main result we show that this gradient flow converges in norm to a minimizer of the Bass functional, and when $d=1$ we further establish that convergence is exponentially fast.

Suggested Citation

  • Julio Backhoff-Veraguas & Gudmund Pammer & Walter Schachermayer, 2024. "The Gradient Flow of the Bass Functional in Martingale Optimal Transport," Papers 2407.18781, arXiv.org.
  • Handle: RePEc:arx:papers:2407.18781
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.18781
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierre Henry-Labord`ere & Jan Ob{l}'oj & Peter Spoida & Nizar Touzi, 2012. "The maximum maximum of a martingale with given $n$ marginals," Papers 1203.6877, arXiv.org, revised Jan 2016.
    2. Luciano Campi & Ismail Laachir & Claude Martini, 2017. "Change of numeraire in the two-marginals martingale transport problem," Finance and Stochastics, Springer, vol. 21(2), pages 471-486, April.
    3. Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglböck & Manu Eder, 2020. "Adapted Wasserstein distances and stability in mathematical finance," Finance and Stochastics, Springer, vol. 24(3), pages 601-632, July.
    4. Bruno Bouchard & Marcel Nutz, 2013. "Arbitrage and duality in nondominated discrete-time models," Papers 1305.6008, arXiv.org, revised Mar 2015.
    5. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    6. Alfred Galichon & Pierre Henri-Labordère & Nizar Touzi, 2014. "A stochastic control approach to No-Arbitrage bounds given marginals, with an application to Lookback options," SciencePo Working papers Main hal-03460952, HAL.
    7. Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglbock & Manu Eder, 2019. "Adapted Wasserstein Distances and Stability in Mathematical Finance," Papers 1901.07450, arXiv.org, revised May 2020.
    8. Benjamin Joseph & Gregoire Loeper & Jan Obloj, 2023. "The Measure Preserving Martingale Sinkhorn Algorithm," Papers 2310.13797, arXiv.org, revised May 2024.
    9. A. Galichon & P. Henry-Labord`ere & N. Touzi, 2014. "A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options," Papers 1401.3921, arXiv.org.
    10. Campi, Luciano & Laachir, Ismail & Martini, Claude, 2017. "Change of numeraire in the two-marginals martingale transport problem," LSE Research Online Documents on Economics 68783, London School of Economics and Political Science, LSE Library.
    11. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beatrice Acciaio & Mathias Beiglboeck & Gudmund Pammer, 2020. "Weak Transport for Non-Convex Costs and Model-independence in a Fixed-Income Market," Papers 2011.04274, arXiv.org, revised Aug 2023.
    2. Beatrice Acciaio & Antonio Marini & Gudmund Pammer, 2023. "Calibration of the Bass Local Volatility model," Papers 2311.14567, arXiv.org.
    3. Julio Backhoff-Veraguas & Mathias Beiglbock & Martin Huesmann & Sigrid Kallblad, 2017. "Martingale Benamou--Brenier: a probabilistic perspective," Papers 1708.04869, arXiv.org, revised Jan 2019.
    4. Mathias Beiglboeck & Alexander Cox & Martin Huesmann, 2017. "The geometry of multi-marginal Skorokhod Embedding," Papers 1705.09505, arXiv.org.
    5. Julio Backhoff-Veraguas & Gregoire Loeper & Jan Obloj, 2024. "Geometric Martingale Benamou-Brenier transport and geometric Bass martingales," Papers 2406.04016, arXiv.org.
    6. Daniel Krv{s}ek & Gudmund Pammer, 2024. "General duality and dual attainment for adapted transport," Papers 2401.11958, arXiv.org, revised Nov 2024.
    7. Mathias Beiglboeck & Pierre Henry-Labordere & Nizar Touzi, 2017. "Monotone Martingale Transport Plans and Skorohod Embedding," Papers 1701.06779, arXiv.org.
    8. Beiglböck, Mathias & Henry-Labordère, Pierre & Touzi, Nizar, 2017. "Monotone martingale transport plans and Skorokhod embedding," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 3005-3013.
    9. Julio Backhoff-Veraguas & Gudmund Pammer, 2019. "Stability of martingale optimal transport and weak optimal transport," Papers 1904.04171, arXiv.org, revised Dec 2020.
    10. Benjamin Jourdain & Gudmund Pammer, 2023. "An extension of martingale transport and stability in robust finance," Papers 2304.09551, arXiv.org.
    11. Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglböck & Manu Eder, 2020. "Adapted Wasserstein distances and stability in mathematical finance," Finance and Stochastics, Springer, vol. 24(3), pages 601-632, July.
    12. Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglbock & Manu Eder, 2019. "Adapted Wasserstein Distances and Stability in Mathematical Finance," Papers 1901.07450, arXiv.org, revised May 2020.
    13. Alessandro Doldi & Marco Frittelli & Emanuela Rosazza Gianin, 2024. "On entropy martingale optimal transport theory," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 47(1), pages 1-42, June.
    14. Alessandro Doldi & Marco Frittelli, 2023. "Entropy martingale optimal transport and nonlinear pricing–hedging duality," Finance and Stochastics, Springer, vol. 27(2), pages 255-304, April.
    15. Linn Engstrom & Sigrid Kallblad & Johan Karlsson, 2024. "Computation of Robust Option Prices via Structured Multi-Marginal Martingale Optimal Transport," Papers 2406.09959, arXiv.org.
    16. Erhan Bayraktar & Shuoqing Deng & Dominykas Norgilas, 2023. "Supermartingale Brenier’s Theorem with Full-Marginal Constraint," World Scientific Book Chapters, in: Robert A Jarrow & Dilip B Madan (ed.), Peter Carr Gedenkschrift Research Advances in Mathematical Finance, chapter 17, pages 569-636, World Scientific Publishing Co. Pte. Ltd..
    17. Mathias Beiglbock & Marcel Nutz & Florian Stebegg, 2019. "Fine Properties of the Optimal Skorokhod Embedding Problem," Papers 1903.03887, arXiv.org, revised Apr 2020.
    18. Marcel Nutz & Florian Stebegg, 2016. "Canonical Supermartingale Couplings," Papers 1609.02867, arXiv.org, revised Nov 2017.
    19. Mathias Beiglbock & Gudmund Pammer & Lorenz Riess, 2024. "Change of numeraire for weak martingale transport," Papers 2406.07523, arXiv.org.
    20. Nutz, Marcel & Stebegg, Florian & Tan, Xiaowei, 2020. "Multiperiod martingale transport," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1568-1615.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.18781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.