Deep Generators on Commodity Markets Application to Deep Hedging
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994.
"A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks,"
Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
- James M. Hutchinson & Andrew W. Lo & Tomaso Poggio, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities Via Learning Networks," NBER Working Papers 4718, National Bureau of Economic Research, Inc.
- Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglböck & Manu Eder, 2020. "Adapted Wasserstein distances and stability in mathematical finance," Finance and Stochastics, Springer, vol. 24(3), pages 601-632, July.
- Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
- Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
- Thomas Deschatre & Olivier F'eron & Pierre Gruet, 2021. "A survey of electricity spot and futures price models for risk management applications," Papers 2103.16918, arXiv.org, revised Jul 2021.
- Julio Backhoff-Veraguas & Daniel Bartl & Mathias Beiglbock & Manu Eder, 2019. "Adapted Wasserstein Distances and Stability in Mathematical Finance," Papers 1901.07450, arXiv.org, revised May 2020.
- Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2020. "Quant GANs: deep generation of financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1419-1440, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bernhard Hientzsch, 2023. "Reinforcement Learning and Deep Stochastic Optimal Control for Final Quadratic Hedging," Papers 2401.08600, arXiv.org.
- Ali Fathi & Bernhard Hientzsch, 2023. "A Comparison of Reinforcement Learning and Deep Trajectory Based Stochastic Control Agents for Stepwise Mean-Variance Hedging," Papers 2302.07996, arXiv.org, revised Nov 2023.
- Nacira Agram & Bernt Øksendal & Jan Rems, 2024. "Deep learning for quadratic hedging in incomplete jump market," Digital Finance, Springer, vol. 6(3), pages 463-499, September.
- Nacira Agram & Bernt {O}ksendal & Jan Rems, 2024. "Deep learning for quadratic hedging in incomplete jump market," Papers 2407.13688, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nicolas Boursin & Carl Remlinger & Joseph Mikael & Carol Anne Hargreaves, 2022. "Deep Generators on Commodity Markets; application to Deep Hedging," Papers 2205.13942, arXiv.org.
- Aurélien Alfonsi & Nerea Vadillo, 2023. "Risk valuation of quanto derivatives on temperature and electricity," Post-Print hal-04358505, HAL.
- Carl Remlinger & Joseph Mikael & Romuald Elie, 2022. "Robust Operator Learning to Solve PDE," Working Papers hal-03599726, HAL.
- Aur'elien Alfonsi & Nerea Vadillo, 2023. "Risk valuation of quanto derivatives on temperature and electricity," Papers 2310.07692, arXiv.org, revised Apr 2024.
- Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.
- Thomas Deschatre & Xavier Warin, 2023. "A Common Shock Model for multidimensional electricity intraday price modelling with application to battery valuation," Papers 2307.16619, arXiv.org.
- Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.
- Beatrice Acciaio & Stephan Eckstein & Songyan Hou, 2024. "Time-Causal VAE: Robust Financial Time Series Generator," Papers 2411.02947, arXiv.org.
- Michael Kupper & Max Nendel & Alessandro Sgarabottolo, 2023. "Risk measures based on weak optimal transport," Papers 2312.05973, arXiv.org.
- Benjamin Jourdain & Gudmund Pammer, 2023. "An extension of martingale transport and stability in robust finance," Papers 2304.09551, arXiv.org.
- Maren Diane Schmeck & Stefan Schwerin, 2021. "The Effect of Mean-Reverting Processes in the Pricing of Options in the Energy Market: An Arithmetic Approach," Risks, MDPI, vol. 9(5), pages 1-19, May.
- Julio Backhoff-Veraguas & Gudmund Pammer & Walter Schachermayer, 2024. "The Gradient Flow of the Bass Functional in Martingale Optimal Transport," Papers 2407.18781, arXiv.org.
- Godin, Frédéric & Ibrahim, Zinatu, 2021. "An analysis of electricity congestion price patterns in North America," Energy Economics, Elsevier, vol. 102(C).
- Erhan Bayraktar & Leonid Dolinskyi & Yan Dolinsky, 2020.
"Extended weak convergence and utility maximisation with proportional transaction costs,"
Finance and Stochastics, Springer, vol. 24(4), pages 1013-1034, October.
- Erhan Bayraktar & Leonid Dolinskyi & Yan Dolinsky, 2019. "Extended Weak Convergence and Utility Maximization with Proportional Transaction Costs," Papers 1912.08863, arXiv.org, revised Jul 2020.
- Rowińska, Paulina A. & Veraart, Almut E.D. & Gruet, Pierre, 2021. "A multi-factor approach to modelling the impact of wind energy on electricity spot prices," Energy Economics, Elsevier, vol. 104(C).
- Luis María Abadie & José Manuel Chamorro, 2024. "On the Dynamics of Spot Power Prices across Western Europe in Pandemic Times," Energies, MDPI, vol. 17(14), pages 1-24, July.
- John Armstrong & Andrei Ionescu, 2023. "Gamma Hedging and Rough Paths," Papers 2309.05054, arXiv.org, revised Mar 2024.
- Ruslan Mirmominov & Johannes Wiesel, 2024. "A dynamic programming principle for multiperiod control problems with bicausal constraints," Papers 2410.23927, arXiv.org.
- Saâdaoui, Foued & Ben Jabeur, Sami, 2023. "Analyzing the influence of geopolitical risks on European power prices using a multiresolution causal neural network," Energy Economics, Elsevier, vol. 124(C).
- Daniel Krv{s}ek & Gudmund Pammer, 2024. "General duality and dual attainment for adapted transport," Papers 2401.11958, arXiv.org, revised Nov 2024.
More about this item
Keywords
time series; generative methods; GAN; deep hedging; energy markets;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:11:y:2022:i:1:p:7-:d:1013290. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.