IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2209.15212.html
   My bibliography  Save this paper

A Posteriori Risk Classification and Ratemaking with Random Effects in the Mixture-of-Experts Model

Author

Listed:
  • Spark C. Tseung
  • Ian Weng Chan
  • Tsz Chai Fung
  • Andrei L. Badescu
  • X. Sheldon Lin

Abstract

A well-designed framework for risk classification and ratemaking in automobile insurance is key to insurers' profitability and risk management, while also ensuring that policyholders are charged a fair premium according to their risk profile. In this paper, we propose to adapt a flexible regression model, called the Mixed LRMoE, to the problem of a posteriori risk classification and ratemaking, where policyholder-level random effects are incorporated to better infer their risk profile reflected by the claim history. We also develop a stochastic variational Expectation-Conditional-Maximization algorithm for estimating model parameters and inferring the posterior distribution of random effects, which is numerically efficient and scalable to large insurance portfolios. We then apply the Mixed LRMoE model to a real, multiyear automobile insurance dataset, where the proposed framework is shown to offer better fit to data and produce posterior premium which accurately reflects policyholders' claim history.

Suggested Citation

  • Spark C. Tseung & Ian Weng Chan & Tsz Chai Fung & Andrei L. Badescu & X. Sheldon Lin, 2022. "A Posteriori Risk Classification and Ratemaking with Random Effects in the Mixture-of-Experts Model," Papers 2209.15212, arXiv.org.
  • Handle: RePEc:arx:papers:2209.15212
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2209.15212
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    2. Dionne, Georges & Vanasse, Charles, 1989. "A Generalization of Automobile Insurance Rating Models: The Negative Binomial Distribution with a Regression Component," ASTIN Bulletin, Cambridge University Press, vol. 19(2), pages 199-212, November.
    3. Frangos, Nicholas E. & Vrontos, Spyridon D., 2001. "Design of Optimal Bonus-Malus Systems With a Frequency and a Severity Component On an Individual Basis in Automobile Insurance," ASTIN Bulletin, Cambridge University Press, vol. 31(1), pages 1-22, May.
    4. Hadfield, Jarrod D., 2010. "MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i02).
    5. Pinquet, Jean, 1998. "Designing Optimal Bonus-Malus Systems from Different Types of Claims," ASTIN Bulletin, Cambridge University Press, vol. 28(2), pages 205-220, November.
    6. Gómez-Déniz, Emilio & Sarabia, José Mari­a & Calderi­n-Ojeda, Enrique, 2008. "Univariate and multivariate versions of the negative binomial-inverse Gaussian distributions with applications," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 39-49, February.
    7. Tzougas, George & Pignatelli di Cerchiara, Alice, 2021. "The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 602-625.
    8. Ng, S.K. & McLachlan, G.J., 2014. "Mixture models for clustering multilevel growth trajectories," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 43-51.
    9. Jean‐Philippe Boucher & Michel Denuit & Montserrat Guillen, 2009. "Number of Accidents or Number of Claims? An Approach with Zero‐Inflated Poisson Models for Panel Data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(4), pages 821-846, December.
    10. Boucher, Jean-Philippe & Denuit, Michel, 2006. "Fixed versus Random Effects in Poisson Regression Models for Claim Counts: A Case Study with Motor Insurance," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 285-301, May.
    11. George Tzougas & Spyridon Vrontos & Nicholas Frangos, 2018. "Bonus-Malus Systems with Two-Component Mixture Models Arising from Different Parametric Families," North American Actuarial Journal, Taylor & Francis Journals, vol. 22(1), pages 55-91, January.
    12. Tzougas, George & Vrontos, Spyridon & Frangos, Nicholas, 2018. "Bonus-Malus systems with two component mixture models arising from different parametric families," LSE Research Online Documents on Economics 84301, London School of Economics and Political Science, LSE Library.
    13. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    14. Park, Sojung C. & Kim, Joseph H.T. & Ahn, Jae Youn, 2018. "Does hunger for bonuses drive the dependence between claim frequency and severity?," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 32-46.
    15. Yau, Kelvin K. W. & Lee, Andy H. & Ng, Angus S. K., 2003. "Finite mixture regression model with random effects: application to neonatal hospital length of stay," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 359-366, January.
    16. Bermúdez, Lluís & Karlis, Dimitris, 2012. "A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3988-3999.
    17. Chamal Gomes & Zhuo Jin & Hailiang Yang, 2021. "Insurance fraud detection with unsupervised deep learning," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 591-624, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
    2. Tzougas, George & Yik, Woo Hee & Mustaqeem, Muhammad Waqar, 2019. "Insurance ratemaking using the Exponential-Lognormal regression model," LSE Research Online Documents on Economics 101729, London School of Economics and Political Science, LSE Library.
    3. George Tzougas, 2020. "EM Estimation for the Poisson-Inverse Gamma Regression Model with Varying Dispersion: An Application to Insurance Ratemaking," Risks, MDPI, vol. 8(3), pages 1-23, September.
    4. Tzougas, George, 2020. "EM estimation for the Poisson-Inverse Gamma regression model with varying dispersion: an application to insurance ratemaking," LSE Research Online Documents on Economics 106539, London School of Economics and Political Science, LSE Library.
    5. Tzougas, George & Pignatelli di Cerchiara, Alice, 2021. "The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 602-625.
    6. Gning, Lucien & Diagne, M.L. & Tchuenche, J.M., 2023. "Hierarchical generalized linear models, correlation and a posteriori ratemaking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    7. Payandeh Najafabadi Amir T. & MohammadPour Saeed, 2018. "A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate–Making Systems," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(2), pages 1-31, July.
    8. Minwoo Kim & Himchan Jeong & Dipak Dey, 2022. "Approximation of Zero-Inflated Poisson Credibility Premium via Variational Bayes Approach," Risks, MDPI, vol. 10(3), pages 1-11, March.
    9. Tzougas, George & Karlis, Dimitris, 2020. "An EM algorithm for fitting a new class of mixed exponential regression models with varying dispersion," LSE Research Online Documents on Economics 104027, London School of Economics and Political Science, LSE Library.
    10. Angers, Jean-François & Desjardins, Denise & Dionne, Georges & Guertin, François, 2006. "Vehicle and Fleet Random Effects in a Model of Insurance Rating for Fleets of Vehicles," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 25-77, May.
    11. Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
    12. Angers, Jean-François & Desjardins, Denise & Dionne, Georges, 2004. "Modèle Bayésien de tarification de l’assurance des flottes de véhicules," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(2), pages 253-303, Juin-Sept.
    13. Yang Lu, 2018. "Dynamic Frailty Count Process in Insurance: A Unified Framework for Estimation, Pricing, and Forecasting," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 85(4), pages 1083-1102, December.
    14. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    15. Jean Pinquet, 2012. "Experience rating in non-life insurance," Working Papers hal-00677100, HAL.
    16. Olena Ragulina, 2017. "Bonus--malus systems with different claim types and varying deductibles," Papers 1707.00917, arXiv.org.
    17. Tzougas, George & Vrontos, Spyridon & Frangos, Nicholas, 2014. "Optimal Bonus-Malus Systems using finite mixture models," LSE Research Online Documents on Economics 70919, London School of Economics and Political Science, LSE Library.
    18. Emilio Gómez-Déniz & Enrique Calderín-Ojeda, 2020. "A Survey of the Individual Claim Size and Other Risk Factors Using Credibility Bonus-Malus Premiums," Risks, MDPI, vol. 8(1), pages 1-19, February.
    19. Tzougas, George & Vrontos, Spyridon & Frangos, Nicholas, 2018. "Bonus-Malus systems with two component mixture models arising from different parametric families," LSE Research Online Documents on Economics 84301, London School of Economics and Political Science, LSE Library.
    20. Denise Desjardins & Georges Dionne & Yang Lu, 2023. "Hierarchical random‐effects model for the insurance pricing of vehicles belonging to a fleet," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 242-259, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2209.15212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.