IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v8y2020i1p20-d323719.html
   My bibliography  Save this article

A Survey of the Individual Claim Size and Other Risk Factors Using Credibility Bonus-Malus Premiums

Author

Listed:
  • Emilio Gómez-Déniz

    (Department of Quantitative Methods and TIDES Institute, University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain)

  • Enrique Calderín-Ojeda

    (Centre for Actuarial Studies, Department of Economics, The University of Melbourne, Melbourne, VIC 3010, Australia)

Abstract

In this paper, a flexible count regression model based on a bivariate compound Poisson distribution is introduced in order to distinguish between different types of claims according to the claim size. Furthermore, it allows us to analyse the factors that affect the number of claims above and below a given claim size threshold in an automobile insurance portfolio. Relevant properties of this model are given. Next, a mixed regression model is derived to compute credibility bonus-malus premiums based on the individual claim size and other risk factors such as gender, type of vehicle, driving area, or age of the vehicle. Results are illustrated by using a well-known automobile insurance portfolio dataset.

Suggested Citation

  • Emilio Gómez-Déniz & Enrique Calderín-Ojeda, 2020. "A Survey of the Individual Claim Size and Other Risk Factors Using Credibility Bonus-Malus Premiums," Risks, MDPI, vol. 8(1), pages 1-19, February.
  • Handle: RePEc:gam:jrisks:v:8:y:2020:i:1:p:20-:d:323719
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/8/1/20/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/8/1/20/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dionne, Georges & Vanasse, Charles, 1989. "A Generalization of Automobile Insurance Rating Models: The Negative Binomial Distribution with a Regression Component," ASTIN Bulletin, Cambridge University Press, vol. 19(2), pages 199-212, November.
    2. Sundt, Bjorn, 2002. "Recursive evaluation of aggregate claims distributions," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 297-322, June.
    3. Pinquet, Jean, 1998. "Designing Optimal Bonus-Malus Systems from Different Types of Claims," ASTIN Bulletin, Cambridge University Press, vol. 28(2), pages 205-220, November.
    4. de Jong,Piet & Heller,Gillian Z., 2008. "Generalized Linear Models for Insurance Data," Cambridge Books, Cambridge University Press, number 9780521879149, October.
    5. Vernic, Raluca, 1997. "On The Bivariate Generalized Poisson Distribution," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 23-32, May.
    6. Walhin, J.F. & Paris, J., 2001. "The Mixed Bivariate Hofmann Distribution," ASTIN Bulletin, Cambridge University Press, vol. 31(1), pages 123-138, May.
    7. Partrat, Christian, 1994. "Compound model for two dependent kinds of claim," Insurance: Mathematics and Economics, Elsevier, vol. 15(2-3), pages 219-231, December.
    8. Heilmann, Wolf-Rudiger, 1989. "Decision theoretic foundations of credibility theory," Insurance: Mathematics and Economics, Elsevier, vol. 8(1), pages 77-95, March.
    9. Walhin, J.F. & Paris, J., 2000. "Recursive Formulae for Some Bivariate Counting Distributions Obtained by the Trivariate Reduction Method," ASTIN Bulletin, Cambridge University Press, vol. 30(1), pages 141-155, May.
    10. Frangos, Nicholas E. & Vrontos, Spyridon D., 2001. "Design of Optimal Bonus-Malus Systems With a Frequency and a Severity Component On an Individual Basis in Automobile Insurance," ASTIN Bulletin, Cambridge University Press, vol. 31(1), pages 1-22, May.
    11. Hesselager, Ole, 1996. "Recursions for certain bivariate counting distributions and their compound distributions," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 35-52, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bermúdez i Morata, Lluís, 2009. "A priori ratemaking using bivariate Poisson regression models," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 135-141, February.
    2. Lluis Bermúdez i Morata, 2008. "A priori ratemaking using bivariate poisson regression models," Working Papers XREAP2008-09, Xarxa de Referència en Economia Aplicada (XREAP), revised Jul 2008.
    3. Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
    4. Tzougas, George & Vrontos, Spyridon & Frangos, Nicholas, 2018. "Bonus-Malus systems with two component mixture models arising from different parametric families," LSE Research Online Documents on Economics 84301, London School of Economics and Political Science, LSE Library.
    5. George Tzougas, 2020. "EM Estimation for the Poisson-Inverse Gamma Regression Model with Varying Dispersion: An Application to Insurance Ratemaking," Risks, MDPI, vol. 8(3), pages 1-23, September.
    6. Emilio Gómez-Déniz & Enrique Calderín-Ojeda, 2018. "Multivariate Credibility in Bonus-Malus Systems Distinguishing between Different Types of Claims," Risks, MDPI, vol. 6(2), pages 1-11, April.
    7. Tzougas, George, 2020. "EM estimation for the Poisson-Inverse Gamma regression model with varying dispersion: an application to insurance ratemaking," LSE Research Online Documents on Economics 106539, London School of Economics and Political Science, LSE Library.
    8. Tzougas, George & Yik, Woo Hee & Mustaqeem, Muhammad Waqar, 2019. "Insurance ratemaking using the Exponential-Lognormal regression model," LSE Research Online Documents on Economics 101729, London School of Economics and Political Science, LSE Library.
    9. Gómez-Déniz, E., 2016. "Bivariate credibility bonus–malus premiums distinguishing between two types of claims," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 117-124.
    10. Yang Lu, 2019. "Flexible (panel) regression models for bivariate count–continuous data with an insurance application," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.
    11. Angers, Jean-François & Desjardins, Denise & Dionne, Georges & Guertin, François, 2006. "Vehicle and Fleet Random Effects in a Model of Insurance Rating for Fleets of Vehicles," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 25-77, May.
    12. Payandeh Najafabadi Amir T. & MohammadPour Saeed, 2018. "A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate–Making Systems," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(2), pages 1-31, July.
    13. Angers, Jean-François & Desjardins, Denise & Dionne, Georges, 2004. "Modèle Bayésien de tarification de l’assurance des flottes de véhicules," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(2), pages 253-303, Juin-Sept.
    14. Olena Ragulina, 2017. "Bonus--malus systems with different claim types and varying deductibles," Papers 1707.00917, arXiv.org.
    15. Tzougas, George & Vrontos, Spyridon & Frangos, Nicholas, 2014. "Optimal Bonus-Malus Systems using finite mixture models," LSE Research Online Documents on Economics 70919, London School of Economics and Political Science, LSE Library.
    16. Sundt, Bjorn, 2002. "Recursive evaluation of aggregate claims distributions," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 297-322, June.
    17. Tan, Chong It, 2016. "Varying transition rules in bonus–malus systems: From rules specification to determination of optimal relativities," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 134-140.
    18. Spark C. Tseung & Ian Weng Chan & Tsz Chai Fung & Andrei L. Badescu & X. Sheldon Lin, 2022. "A Posteriori Risk Classification and Ratemaking with Random Effects in the Mixture-of-Experts Model," Papers 2209.15212, arXiv.org.
    19. Shi, Peng & Valdez, Emiliano A., 2011. "A copula approach to test asymmetric information with applications to predictive modeling," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 226-239, September.
    20. Yang Lu, 2018. "Dynamic Frailty Count Process in Insurance: A Unified Framework for Estimation, Pricing, and Forecasting," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 85(4), pages 1083-1102, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:8:y:2020:i:1:p:20-:d:323719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.