IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v033i02.html
   My bibliography  Save this article

MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package

Author

Listed:
  • Hadfield, Jarrod D.

Abstract

Generalized linear mixed models provide a flexible framework for modeling a range of data, although with non-Gaussian response variables the likelihood cannot be obtained in closed form. Markov chain Monte Carlo methods solve this problem by sampling from a series of simpler conditional distributions that can be evaluated. The R package MCMCglmm implements such an algorithm for a range of model fitting problems. More than one response variable can be analyzed simultaneously, and these variables are allowed to follow Gaussian, Poisson, multi(bi)nominal, exponential, zero-inflated and censored distributions. A range of variance structures are permitted for the random effects, including interactions with categorical or continuous variables (i.e., random regression), and more complicated variance structures that arise through shared ancestry, either through a pedigree or through a phylogeny. Missing values are permitted in the response variable(s) and data can be known up to some level of measurement error as in meta-analysis. All simu- lation is done in C/ C++ using the CSparse library for sparse linear systems.

Suggested Citation

  • Hadfield, Jarrod D., 2010. "MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i02).
  • Handle: RePEc:jss:jstsof:v:033:i02
    DOI: http://hdl.handle.net/10.18637/jss.v033.i02
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v033i02/v33i02.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v033i02/MCMCglmm_2.01.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v033i02/v33i02.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v033.i02?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    2. William J. Browne & Fiona Steele & Mousa Golalizadeh & Martin J. Green, 2009. "The use of simple reparameterizations to improve the efficiency of Markov chain Monte Carlo estimation for multilevel models with applications to discrete time survival models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(3), pages 579-598, June.
    3. P. Damlen & J. Wakefield & S. Walker, 1999. "Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 331-344, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saeede Ajorlou & Issac Shams & Kai Yang, 2015. "An analytics approach to designing patient centered medical homes," Health Care Management Science, Springer, vol. 18(1), pages 3-18, March.
    2. Ausín, M. Concepción & Galeano, Pedro & Ghosh, Pulak, 2014. "A semiparametric Bayesian approach to the analysis of financial time series with applications to value at risk estimation," European Journal of Operational Research, Elsevier, vol. 232(2), pages 350-358.
    3. George Leckie & Rebecca Pillinger & Kelvyn Jones & Harvey Goldstein, 2012. "Multilevel Modeling of Social Segregation," Journal of Educational and Behavioral Statistics, , vol. 37(1), pages 3-30, February.
    4. Shai Mulinari & Sol Pia Juárez & Philippe Wagner & Juan Merlo, 2015. "Does Maternal Country of Birth Matter for Understanding Offspring’s Birthweight? A Multilevel Analysis of Individual Heterogeneity in Sweden," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-19, May.
    5. repec:jss:jstsof:33:i02 is not listed on IDEAS
    6. Gamerman, Dani & Moreira, Ajax R. B., 2004. "Multivariate spatial regression models," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 262-281, November.
    7. Emese Lazar & Shuyuan Qi & Radu Tunaru, 2020. "Measures of Model Risk in Continuous-time Finance Models," Papers 2010.08113, arXiv.org, revised Oct 2020.
    8. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    9. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    10. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    11. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    12. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    13. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    14. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    15. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    16. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    17. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    18. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    19. David Macro & Jeroen Weesie, 2016. "Inequalities between Others Do Matter: Evidence from Multiplayer Dictator Games," Games, MDPI, vol. 7(2), pages 1-23, April.
    20. Tautenhahn, Susanne & Heilmeier, Hermann & Jung, Martin & Kahl, Anja & Kattge, Jens & Moffat, Antje & Wirth, Christian, 2012. "Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests," Ecological Modelling, Elsevier, vol. 233(C), pages 90-103.
    21. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:033:i02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.