IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2207.04481.html
   My bibliography  Save this paper

Detecting Grouped Local Average Treatment Effects and Selecting True Instruments

Author

Listed:
  • Nicolas Apfel
  • Helmut Farbmacher
  • Rebecca Groh
  • Martin Huber
  • Henrika Langen

Abstract

Under an endogenous binary treatment with heterogeneous effects and multiple instruments, we propose a two-step procedure for identifying complier groups with identical local average treatment effects (LATE) despite relying on distinct instruments, even if several instruments violate the identifying assumptions. We use the fact that the LATE is homogeneous for instruments which (i) satisfy the LATE assumptions (instrument validity and treatment monotonicity in the instrument) and (ii) generate identical complier groups in terms of treatment propensities given the respective instruments. We propose a two-step procedure, where we first cluster the propensity scores in the first step and find groups of IVs with the same reduced form parameters in the second step. Under the plurality assumption that within each set of instruments with identical treatment propensities, instruments truly satisfying the LATE assumptions are the largest group, our procedure permits identifying these true instruments in a data driven way. We show that our procedure is consistent and provides consistent and asymptotically normal estimators of underlying LATEs. We also provide a simulation study investigating the finite sample properties of our approach and an empirical application investigating the effect of incarceration on recidivism in the US with judge assignments serving as instruments.

Suggested Citation

  • Nicolas Apfel & Helmut Farbmacher & Rebecca Groh & Martin Huber & Henrika Langen, 2022. "Detecting Grouped Local Average Treatment Effects and Selecting True Instruments," Papers 2207.04481, arXiv.org, revised Oct 2023.
  • Handle: RePEc:arx:papers:2207.04481
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2207.04481
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frank Windmeijer & Xiaoran Liang & Fernando P. Hartwig & Jack Bowden, 2021. "The confidence interval method for selecting valid instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 752-776, September.
    2. Jeffrey R. Kling, 2006. "Incarceration Length, Employment, and Earnings," American Economic Review, American Economic Association, vol. 96(3), pages 863-876, June.
    3. Liangjun Su & Zhentao Shi & Peter C. B. Phillips, 2016. "Identifying Latent Structures in Panel Data," Econometrica, Econometric Society, vol. 84, pages 2215-2264, November.
    4. Brigham Frandsen & Lars Lefgren & Emily Leslie, 2023. "Judging Judge Fixed Effects," American Economic Review, American Economic Association, vol. 113(1), pages 253-277, January.
    5. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    6. Huber, Martin, 2014. "Sensitivity checks for the local average treatment effect," Economics Letters, Elsevier, vol. 123(2), pages 220-223.
    7. Zijian Guo & Hyunseung Kang & T. Tony Cai & Dylan S. Small, 2018. "Confidence intervals for causal effects with invalid instruments by using two‐stage hard thresholding with voting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 793-815, September.
    8. Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2019. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1339-1350, July.
    9. Donald W. K. Andrews, 1999. "Consistent Moment Selection Procedures for Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 67(3), pages 543-564, May.
    10. Frolich, Markus, 2007. "Nonparametric IV estimation of local average treatment effects with covariates," Journal of Econometrics, Elsevier, vol. 139(1), pages 35-75, July.
    11. Hyunseung Kang & Anru Zhang & T. Tony Cai & Dylan S. Small, 2016. "Instrumental Variables Estimation With Some Invalid Instruments and its Application to Mendelian Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 132-144, March.
    12. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    13. Tomás Cortés & Nicolás Grau & Jorge Rivera, 2019. "Juvenile Incarceration and Adult Recidivism," Working Papers wp482, University of Chile, Department of Economics.
    14. Han, Chirok, 2008. "Detecting invalid instruments using L1-GMM," Economics Letters, Elsevier, vol. 101(3), pages 285-287, December.
    15. Emily Leslie & Nolan G. Pope, 2017. "The Unintended Impact of Pretrial Detention on Case Outcomes: Evidence from New York City Arraignments," Journal of Law and Economics, University of Chicago Press, vol. 60(3), pages 529-557.
    16. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolas Apfel & Julia Hatamyar & Martin Huber & Jannis Kueck, 2024. "Learning control variables and instruments for causal analysis in observational data," Papers 2407.04448, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoran Liang & Eleanor Sanderson & Frank Windmeijer, 2022. "Selecting Valid Instrumental Variables in Linear Models with Multiple Exposure Variables: Adaptive Lasso and the Median-of-Medians Estimator," Papers 2208.05278, arXiv.org.
    2. Nicolas Apfel, 2019. "Relaxing the Exclusion Restriction in Shift-Share Instrumental Variable Estimation," Papers 1907.00222, arXiv.org, revised Jul 2022.
    3. Ivan A Canay & Magne Mogstad & Jack Mount, 2024. "On the Use of Outcome Tests for Detecting Bias in Decision Making," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(4), pages 2135-2167.
    4. Nicolas Apfel & Frank Windmeijer, 2022. "The Falsification Adaptive Set in Linear Models with Instrumental Variables that Violate the Exclusion or Conditional Exogeneity Restriction," Papers 2212.04814, arXiv.org, revised Apr 2024.
    5. Yiqi Lin & Frank Windmeijer & Xinyuan Song & Qingliang Fan, 2022. "On the instrumental variable estimation with many weak and invalid instruments," Papers 2207.03035, arXiv.org, revised Dec 2023.
    6. Vitor Possebom, 2021. "Crime and Mismeasured Punishment: Marginal Treatment Effect with Misclassification," Papers 2106.00536, arXiv.org, revised Jul 2023.
    7. Tobias Klein, 2013. "College education and wages in the U.K.: estimating conditional average structural functions in nonadditive models with binary endogenous variables," Empirical Economics, Springer, vol. 44(1), pages 135-161, February.
    8. Nicolás Grau & Damián Vergara, "undated". "A Simple Test for Prejudice in Decision Processes: The Prediction-Based Outcome Test," Working Papers wp493, University of Chile, Department of Economics.
    9. Ruoyu Wang & Qihua Wang & Wang Miao, 2023. "A robust fusion-extraction procedure with summary statistics in the presence of biased sources," Biometrika, Biometrika Trust, vol. 110(4), pages 1023-1040.
    10. Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org.
    11. Kaspar Wüthrich, 2020. "A Comparison of Two Quantile Models With Endogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
    12. Phillip Heiler, 2020. "Efficient Covariate Balancing for the Local Average Treatment Effect," Papers 2007.04346, arXiv.org.
    13. Claudia Noack, 2021. "Sensitivity of LATE Estimates to Violations of the Monotonicity Assumption," Papers 2106.06421, arXiv.org.
    14. Domenico Depalo, 2020. "Explaining the causal effect of adherence to medication on cholesterol through the marginal patient," Health Economics, John Wiley & Sons, Ltd., vol. 29(S1), pages 110-126, October.
    15. Dionissi Aliprantis, 2017. "Assessing the evidence on neighborhood effects from Moving to Opportunity," Empirical Economics, Springer, vol. 52(3), pages 925-954, May.
    16. Frank Windmeijer & Xiaoran Liang & Fernando P. Hartwig & Jack Bowden, 2021. "The confidence interval method for selecting valid instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 752-776, September.
    17. Qingliang Fan & Zijian Guo & Ziwei Mei, 2022. "A Heteroskedasticity-Robust Overidentifying Restriction Test with High-Dimensional Covariates," Papers 2205.00171, arXiv.org, revised May 2024.
    18. Bhuller, Manudeep & Sigstad, Henrik, 2024. "2SLS with multiple treatments," Journal of Econometrics, Elsevier, vol. 242(1).
    19. Schmieder, Julia, 2021. "Fertility as a driver of maternal employment," Labour Economics, Elsevier, vol. 72(C).
    20. Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2207.04481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.