IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.12258.html
   My bibliography  Save this paper

On Recoding Ordered Treatments as Binary Indicators

Author

Listed:
  • Evan K. Rose
  • Yotam Shem-Tov

Abstract

Researchers using instrumental variables to investigate ordered treatments often recode treatment into an indicator for any exposure. We investigate this estimand under the assumption that the instruments shift compliers from no treatment to some but not from some treatment to more. We show that when there are extensive margin compliers only (EMCO) this estimand captures a weighted average of treatment effects that can be partially unbundled into each complier group's potential outcome means. We also establish an equivalence between EMCO and a two-factor selection model and apply our results to study treatment heterogeneity in the Oregon Health Insurance Experiment.

Suggested Citation

  • Evan K. Rose & Yotam Shem-Tov, 2021. "On Recoding Ordered Treatments as Binary Indicators," Papers 2111.12258, arXiv.org, revised Mar 2024.
  • Handle: RePEc:arx:papers:2111.12258
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.12258
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philip Marx, 2020. "Sharp Bounds in the Latent Index Selection Model," Papers 2012.02390, arXiv.org, revised Apr 2023.
    2. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    3. Armstrong, Timothy B., 2018. "On the choice of test statistic for conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 203(2), pages 241-255.
    4. Isaiah Andrews & Jonathan Roth & Ariel Pakes, 2023. "Inference for Linear Conditional Moment Inequalities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(6), pages 2763-2791.
    5. Brigham Frandsen & Lars Lefgren & Emily Leslie, 2023. "Judging Judge Fixed Effects," American Economic Review, American Economic Association, vol. 113(1), pages 253-277, January.
    6. James J. Heckman, 2010. "Building Bridges between Structural and Program Evaluation Approaches to Evaluating Policy," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 356-398, June.
    7. Gregory Cox & Xiaoxia Shi, 2023. "Simple Adaptive Size-Exact Testing for Full-Vector and Subvector Inference in Moment Inequality Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(1), pages 201-228.
    8. Donald W. K. Andrews & Panle Jia Barwick, 2012. "Inference for Parameters Defined by Moment Inequalities: A Recommended Moment Selection Procedure," Econometrica, Econometric Society, vol. 80(6), pages 2805-2826, November.
    9. Martin Huber & Giovanni Mellace, 2015. "Testing Instrument Validity for LATE Identification Based on Inequality Moment Constraints," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 398-411, May.
    10. Victor Chernozhukov & Denis Chetverikov & Kengo Kato & Aureo de Paula, 2019. "Inference on Causal and Structural Parameters using Many Moment Inequalities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(5), pages 1867-1900.
    11. Costas Meghir & Mårten Palme, 1999. "Assessing the effect of schooling on earnings using a social experiment," IFS Working Papers W99/10, Institute for Fiscal Studies.
    12. Martin E Andresen & Martin Huber, 2021. "Instrument-based estimation with binarised treatments: issues and tests for the exclusion restriction," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 536-558.
    13. Joseph P. Romano & Azeem M. Shaikh & Michael Wolf, 2014. "A Practical Two‐Step Method for Testing Moment Inequalities," Econometrica, Econometric Society, vol. 82, pages 1979-2002, September.
    14. Toru Kitagawa, 2015. "A Test for Instrument Validity," Econometrica, Econometric Society, vol. 83(5), pages 2043-2063, September.
    15. Amy Finkelstein & Sarah Taubman & Bill Wright & Mira Bernstein & Jonathan Gruber & Joseph P. Newhouse & Heidi Allen & Katherine Baicker, 2012. "The Oregon Health Insurance Experiment: Evidence from the First Year," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(3), pages 1057-1106.
    16. Allen, Roy, 2018. "Testing moment inequalities: Selection versus recentering," Economics Letters, Elsevier, vol. 162(C), pages 124-126.
    17. Gordon B. Dahl, 2002. "Mobility and the Return to Education: Testing a Roy Model with Multiple Markets," Econometrica, Econometric Society, vol. 70(6), pages 2367-2420, November.
    18. Heckman, James J, 1974. "Shadow Prices, Market Wages, and Labor Supply," Econometrica, Econometric Society, vol. 42(4), pages 679-694, July.
    19. Anna Aizer & Joseph J. Doyle, 2015. "Juvenile Incarceration, Human Capital, and Future Crime: Evidence from Randomly Assigned Judges," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(2), pages 759-803.
    20. Jacob Goldin & Ithai Z Lurie & Janet McCubbin, 0. "Health Insurance and Mortality: Experimental Evidence from Taxpayer Outreach," The Quarterly Journal of Economics, Oxford University Press, vol. 136(1), pages 1-49.
    21. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    22. Guido W. Imbens & Donald B. Rubin, 1997. "Estimating Outcome Distributions for Compliers in Instrumental Variables Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 555-574.
    23. Abadie A., 2002. "Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 284-292, March.
    24. Zheng Fang & Andres Santos, 2019. "Inference on Directionally Differentiable Functions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(1), pages 377-412.
    25. Marshall, John, 2016. "Coarsening Bias: How Coarse Treatment Measurement Upwardly Biases Instrumental Variable Estimates," Political Analysis, Cambridge University Press, vol. 24(2), pages 157-171, April.
    26. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    27. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    28. Deaton,Angus & Muellbauer,John, 1980. "Economics and Consumer Behavior," Cambridge Books, Cambridge University Press, number 9780521296762, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Zhenting, 2023. "Instrument validity for heterogeneous causal effects," Journal of Econometrics, Elsevier, vol. 237(2).
    2. Patrick Kline & Christopher R. Walters, 2019. "On Heckits, LATE, and Numerical Equivalence," Econometrica, Econometric Society, vol. 87(2), pages 677-696, March.
    3. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    4. Nadja van 't Hoff, 2023. "Identifying Causal Effects of Discrete, Ordered and ContinuousTreatments using Multiple Instrumental Variables," Papers 2311.17575, arXiv.org, revised Oct 2024.
    5. Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    6. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    7. Black, Dan A. & Joo, Joonhwi & LaLonde, Robert & Smith, Jeffrey A. & Taylor, Evan J., 2022. "Simple Tests for Selection: Learning More from Instrumental Variables," Labour Economics, Elsevier, vol. 79(C).
    8. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    9. Claudia Noack, 2021. "Sensitivity of LATE Estimates to Violations of the Monotonicity Assumption," Papers 2106.06421, arXiv.org.
    10. Patrick Kline & Christopher R. Walters, 2016. "Evaluating Public Programs with Close Substitutes: The Case of HeadStart," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1795-1848.
    11. C de Chaisemartin & X D’HaultfŒuille, 2018. "Fuzzy Differences-in-Differences," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(2), pages 999-1028.
    12. Machado, Cecilia & Shaikh, Azeem M. & Vytlacil, Edward J., 2019. "Instrumental variables and the sign of the average treatment effect," Journal of Econometrics, Elsevier, vol. 212(2), pages 522-555.
    13. Thomas Carr & Toru Kitagawa, 2021. "Testing Instrument Validity with Covariates," Papers 2112.08092, arXiv.org, revised Sep 2023.
    14. Blaise Melly und Kaspar W thrich, 2016. "Local quantile treatment effects," Diskussionsschriften dp1605, Universitaet Bern, Departement Volkswirtschaft.
    15. Huber, Martin & Mellace, Giovanni, 2011. "Testing instrument validity in sample selection models," Economics Working Paper Series 1145, University of St. Gallen, School of Economics and Political Science.
    16. Brigham Frandsen & Lars Lefgren & Emily Leslie, 2023. "Judging Judge Fixed Effects," American Economic Review, American Economic Association, vol. 113(1), pages 253-277, January.
    17. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Markus Frölich & Martin Huber, 2017. "Direct and indirect treatment effects–causal chains and mediation analysis with instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1645-1666, November.
    19. Kirkebøen, Lars & Leuven, Edwin & Mogstad, Magne, 2014. "Field of Study, Earnings, and Self-Selection," Memorandum 29/2014, Oslo University, Department of Economics.
    20. Kédagni, Désiré, 2023. "Identifying treatment effects in the presence of confounded types," Journal of Econometrics, Elsevier, vol. 234(2), pages 479-511.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.12258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.