Inference on causal and structural parameters using many moment inequalities
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato & Aureo de Paula, 2019. "Inference on Causal and Structural Parameters using Many Moment Inequalities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(5), pages 1867-1900.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2018. "Inference on causal and structural parameters using many moment inequalities," CeMMAP working papers CWP60/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
References listed on IDEAS
- Donald W. K. Andrews, 2004.
"the Block-Block Bootstrap: Improved Asymptotic Refinements,"
Econometrica, Econometric Society, vol. 72(3), pages 673-700, May.
- Donald W.K. Andrews, 2002. "The Block-block Bootstrap: Improved Asymptotic Refinements," Cowles Foundation Discussion Papers 1370, Cowles Foundation for Research in Economics, Yale University.
- Efstathios Paparoditis & Dimitris N. Politis, 2002. "The tapered block bootstrap for general statistics from stationary sequences," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 131-148, June.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012.
"Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors,"
Papers
1212.6906, arXiv.org, revised Jan 2018.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," CeMMAP working papers 76/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," CeMMAP working papers CWP76/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Eberlein, Ernst, 1984. "Weak convergence of partial sums of absolutely regular sequences," Statistics & Probability Letters, Elsevier, vol. 2(5), pages 291-293, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013.
"Testing Many Moment Inequalities,"
CeMMAP working papers
65/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2016. "Testing many moment inequalities," CeMMAP working papers CWP42/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2016. "Testing many moment inequalities," CeMMAP working papers 42/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2014. "Testing many moment inequalities," CeMMAP working papers 52/14, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2014. "Testing many moment inequalities," CeMMAP working papers CWP52/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Testing Many Moment Inequalities," CeMMAP working papers CWP65/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Paulo M. D. C. Parente & Richard J. Smith, 2021.
"Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
- Paulo M.D.C. Parente & Richard J. Smith, 2018. "Quasi-Maximum Likelihood and the Kernel Block Bootstrap for Nonlinear Dynamic Models," Working Papers REM 2018/59, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
- Paulo Parente & Richard J. Smith, 2019. "Quasi-maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," CeMMAP working papers CWP60/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Kevin Dowd, 2007. "Validating multiple-period density-forecasting models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 251-270.
- Joel L. Horowitz, 2018. "Bootstrap Methods in Econometrics," Papers 1809.04016, arXiv.org.
- Joel L. Horowitz, 2018. "Bootstrap methods in econometrics," CeMMAP working papers CWP53/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-dimensional econometrics and regularized GMM,"
CeMMAP working papers
CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
- repec:hum:wpaper:sfb649dp2015-031 is not listed on IDEAS
- repec:hum:wpaper:sfb649dp2014-067 is not listed on IDEAS
- Shengchun Kong & Zhuqing Yu & Xianyang Zhang & Guang Cheng, 2021. "High‐dimensional robust inference for Cox regression models using desparsified Lasso," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 1068-1095, September.
- Drees, Holger & Janßen, Anja & Neblung, Sebastian, 2021. "Cluster based inference for extremes of time series," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 1-33.
- Magne Mogstad & Joseph P Romano & Azeem M Shaikh & Daniel Wilhelm, 2024.
"Inference for Ranks with Applications to Mobility across Neighbourhoods and Academic Achievement across Countries,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 476-518.
- Magne Mogstad & Joseph P. Romano & Azeem Shaikh & Daniel Wilhelm, 2020. "Inference for Ranks with Applications to Mobility across Neighborhoods and Academic Achievement across Countries," NBER Working Papers 26883, National Bureau of Economic Research, Inc.
- Magne Mogstad & Joseph P. Romano & Azeem M. Shaikh & Daniel Wilhelm, 2023. "Inference for ranks with applications to mobility across neighborhoods and academic achievement across countries," CeMMAP working papers 03/23, Institute for Fiscal Studies.
- Magne Mogstad & Joseph P. Romano & Azeem M. Shaikh & Daniel Wilhelm, 2020. "Inference for Ranks with Applications to Mobility across Neighborhoods and Academic Achievement across Countries," RF Berlin - CReAM Discussion Paper Series 2008, Rockwool Foundation Berlin (RF Berlin) - Centre for Research and Analysis of Migration (CReAM).
- Magne Mogstad & Joseph P. Romano & Azeem M. Shaikh & Daniel Wilhelm, 2020. "Inference for Ranks with Applications to Mobility across Neighborhoods and Academic Achievement across Countries," Working Papers 2020-16, Becker Friedman Institute for Research In Economics.
- Magne Mogstad & Joseph P. Romano & Azeem M. Shaikh & Daniel Wilhelm, 2021. "Inference for ranks with applications to mobility across neighborhoods and academic achievement across countries," CeMMAP working papers CWP17/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Magne Mogstad & Joseph P. Romano & Daniel Wilhelm & Azeem M. Shaikh, 2020. "Inference for ranks with applications to mobility across neighborhoods and academic achievement across countries," CeMMAP working papers CWP10/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Jung S You & Minsoo Jeong, 2021. "A Performance Comparison of Various Bootstrap Methods for Diffusion Processes," Journal of Economics and Behavioral Studies, AMH International, vol. 13(4), pages 1-7.
- Brice Ozenne & Esben Budtz-Jørgensen & Sebastian Elgaard Ebert, 2023. "Controlling the familywise error rate when performing multiple comparisons in a linear latent variable model," Computational Statistics, Springer, vol. 38(1), pages 1-23, March.
- Hansen, Christian & Liao, Yuan, 2019.
"The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications,"
Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Papers 1611.09420, arXiv.org, revised Dec 2016.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Departmental Working Papers 201610, Rutgers University, Department of Economics.
- Hansen, Christian & Liao, Yuan, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," MPRA Paper 75313, University Library of Munich, Germany.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013.
"Uniform post selection inference for LAD regression and other z-estimation problems,"
CeMMAP working papers
CWP74/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers 74/13, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Uniform post selection inference for LAD regression and other Z-estimation problems," CeMMAP working papers 51/14, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform Post Selection Inference for LAD Regression and Other Z-estimation problems," Papers 1304.0282, arXiv.org, revised Oct 2020.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Uniform post selection inference for LAD regression and other Z-estimation problems," CeMMAP working papers CWP51/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Abhishek Kaul, 2017.
"Confidence bands for coefficients in high dimensional linear models with error-in-variables,"
CeMMAP working papers
CWP22/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Abhishek Kaul, 2017. "Confidence bands for coefficients in high dimensional linear models with error-in-variables," CeMMAP working papers 22/17, Institute for Fiscal Studies.
- Marco Giacoletti & Kristoffer T. Laursen & Kenneth J. Singleton, 2021. "Learning From Disagreement in the U.S. Treasury Bond Market," Journal of Finance, American Finance Association, vol. 76(1), pages 395-441, February.
- Yuta Koike, 2023. "High-Dimensional Central Limit Theorems for Homogeneous Sums," Journal of Theoretical Probability, Springer, vol. 36(1), pages 1-45, March.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016.
"Double machine learning for treatment and causal parameters,"
CeMMAP working papers
49/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers CWP49/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Wu Wang & Xuming He & Zhongyi Zhu, 2020. "Statistical inference for multiple change‐point models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1149-1170, December.
- Jinyong Hahn & Zhipeng Liao, 2021. "Bootstrap Standard Error Estimates and Inference," Econometrica, Econometric Society, vol. 89(4), pages 1963-1977, July.
- Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
More about this item
JEL classification:
- C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
- C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1312.7614. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.