IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2104.10457.html
   My bibliography  Save this paper

Macroeconomic forecasting with statistically validated knowledge graphs

Author

Listed:
  • Sonja Tilly
  • Giacomo Livan

Abstract

This study leverages narrative from global newspapers to construct theme-based knowledge graphs about world events, demonstrating that features extracted from such graphs improve forecasts of industrial production in three large economies compared to a number of benchmarks. Our analysis relies on a filtering methodology that extracts "backbones" of statistically significant edges from large graph data sets. We find that changes in the eigenvector centrality of nodes in such backbones capture shifts in relative importance between different themes significantly better than graph similarity measures. We supplement our results with an interpretability analysis, showing that the theme categories "disease" and "economic" have the strongest predictive power during the time period that we consider. Our work serves as a blueprint for the construction of parsimonious - yet informative - theme-based knowledge graphs to monitor in real time the evolution of relevant phenomena in socio-economic systems.

Suggested Citation

  • Sonja Tilly & Giacomo Livan, 2021. "Macroeconomic forecasting with statistically validated knowledge graphs," Papers 2104.10457, arXiv.org.
  • Handle: RePEc:arx:papers:2104.10457
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2104.10457
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nyman, Rickard & Kapadia, Sujit & Tuckett, David, 2021. "News and narratives in financial systems: Exploiting big data for systemic risk assessment," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    2. Vasco M Carvalho & Makoto Nirei & Yukiko U Saito & Alireza Tahbaz-Salehi, 2021. "Supply Chain Disruptions: Evidence from the Great East Japan Earthquake," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 136(2), pages 1255-1321.
    3. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    4. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    5. Vasco M Carvalho & Makoto Nirei & Yukiko U Saito & Alireza Tahbaz-Salehi, 0. "Supply Chain Disruptions: Evidence from the Great East Japan Earthquake," The Quarterly Journal of Economics, Oxford University Press, vol. 136(2), pages 1255-1321.
    6. Mercedes Campi & Marco Duenas & Giorgio Fagiolo, 2019. "How do countries specialize in food production? A complex-network analysis of the global agricultural product space," LEM Papers Series 2019/37, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    7. Cubadda, Gianluca & Guardabascio, Barbara, 2012. "A medium-N approach to macroeconomic forecasting," Economic Modelling, Elsevier, vol. 29(4), pages 1099-1105.
    8. Carlo Piccardi & Lucia Tajoli, 2018. "Complexity, centralization, and fragility in economic networks," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-13, November.
    9. van Eyden, Reneé & Difeto, Mamothoana & Gupta, Rangan & Wohar, Mark E., 2019. "Oil price volatility and economic growth: Evidence from advanced economies using more than a century’s data," Applied Energy, Elsevier, vol. 233, pages 612-621.
    10. Luigi Bellomarini & Marco Benedetti & Andrea Gentili & Rosario Laurendi & Davide Magnanimi & Antonio Muci & Emanuel Sallinger, 2020. "COVID-19 and Company Knowledge Graphs: Assessing Golden Powers and Economic Impact of Selective Lockdown via AI Reasoning," Papers 2004.10119, arXiv.org.
    11. Yucheng Yang & Yue Pang & Guanhua Huang & Weinan E, 2020. "The Knowledge Graph for Macroeconomic Analysis with Alternative Big Data," Papers 2010.05172, arXiv.org.
    12. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    13. Yoav Benjamini & Daniel Yekutieli, 2005. "False Discovery Rate-Adjusted Multiple Confidence Intervals for Selected Parameters," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 71-81, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    2. Reif Magnus, 2021. "Macroeconomic uncertainty and forecasting macroeconomic aggregates," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-20, April.
    3. Vigo Pereira, Caio, 2021. "Portfolio efficiency with high-dimensional data as conditioning information," International Review of Financial Analysis, Elsevier, vol. 77(C).
    4. Eleni Kalamara & Arthur Turrell & Chris Redl & George Kapetanios & Sujit Kapadia, 2022. "Making text count: Economic forecasting using newspaper text," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 896-919, August.
    5. Jean-Charles Bricongne & Baptiste Meunier & Raquel Caldeira, 2024. "Should Central Banks Care About Text Mining? A Literature Review," Working papers 950, Banque de France.
    6. Manfred M. Fischer & Florian Huber & Michael Pfarrhofer, 2018. "The transmission of uncertainty shocks on income inequality: State-level evidence from the United States," Papers 1806.08278, arXiv.org.
    7. Vasco M. Carvalho & Alireza Tahbaz-Salehi, 2019. "Production Networks: A Primer," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 635-663, August.
    8. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    9. Thomas J. Sargent & John Stachurski, 2022. "Economic Networks: Theory and Computation," Papers 2203.11972, arXiv.org, revised Jul 2022.
    10. David Rezza Baqaee & Emmanuel Farhi, 2018. "Macroeconomics with Heterogeneous Agents and Input-Output Networks," NBER Working Papers 24684, National Bureau of Economic Research, Inc.
    11. Erik Frohm & Vanessa Gunnella, 2021. "Spillovers in global production networks," Review of International Economics, Wiley Blackwell, vol. 29(3), pages 663-680, August.
    12. Abbritti, Mirko & Carcel, Hector & Gil-Alana, Luis & Moreno, Antonio, 2023. "Term premium in a fractionally cointegrated yield curve," Journal of Banking & Finance, Elsevier, vol. 149(C).
    13. Alex Nikolsko‐Rzhevskyy & Oleksandr Talavera & Nam Vu, 2023. "The flood that caused a drought," Economic Inquiry, Western Economic Association International, vol. 61(4), pages 965-981, October.
    14. Huang, Yi & Lin, Chen & Liu, Sibo & Tang, Heiwai, 2023. "Trade networks and firm value: Evidence from the U.S.-China trade war," Journal of International Economics, Elsevier, vol. 145(C).
    15. Julian Di Giovanni & Galina Hale, 2022. "Stock Market Spillovers via the Global Production Network: Transmission of U.S. Monetary Policy," Journal of Finance, American Finance Association, vol. 77(6), pages 3373-3421, December.
    16. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2015. "Networks, Shocks, and Systemic Risk," NBER Working Papers 20931, National Bureau of Economic Research, Inc.
    17. Banu Demir & Beata Javorcik & Tomasz K. Michalski & Evren Ors, 2024. "Financial Constraints and Propagation of Shocks in Production Networks," The Review of Economics and Statistics, MIT Press, vol. 106(2), pages 437-454, March.
    18. Barberis, Eduardo & Freddi, Daniela & Giammetti, Raffaele & Polidori, Paolo & Teobaldelli, Désirée & Viganò, Elena, 2020. "Trade Relationships in the European Pork Value Chain: A Network Analysis," Economia agro-alimentare / Food Economy, Italian Society of Agri-food Economics/Società Italiana di Economia Agro-Alimentare (SIEA), vol. 22(1), May.
    19. Andrew B. Bernard & Andreas Moxnes, 2018. "Networks and Trade," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 65-85, August.
    20. Ogura, Yoshiaki & Okui, Ryo & Saito, Yukiko Umeno, 2015. "Network-Motivated Lending Decisions," HIT-REFINED Working Paper Series 29, Institute of Economic Research, Hitotsubashi University.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2104.10457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.