IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2103.16409.html
   My bibliography  Save this paper

Deep Hedging of Derivatives Using Reinforcement Learning

Author

Listed:
  • Jay Cao
  • Jacky Chen
  • John Hull
  • Zissis Poulos

Abstract

This paper shows how reinforcement learning can be used to derive optimal hedging strategies for derivatives when there are transaction costs. The paper illustrates the approach by showing the difference between using delta hedging and optimal hedging for a short position in a call option when the objective is to minimize a function equal to the mean hedging cost plus a constant times the standard deviation of the hedging cost. Two situations are considered. In the first, the asset price follows a geometric Brownian motion. In the second, the asset price follows a stochastic volatility process. The paper extends the basic reinforcement learning approach in a number of ways. First, it uses two different Q-functions so that both the expected value of the cost and the expected value of the square of the cost are tracked for different state/action combinations. This approach increases the range of objective functions that can be used. Second, it uses a learning algorithm that allows for continuous state and action space. Third, it compares the accounting P&L approach (where the hedged position is valued at each step) and the cash flow approach (where cash inflows and outflows are used). We find that a hybrid approach involving the use of an accounting P&L approach that incorporates a relatively simple valuation model works well. The valuation model does not have to correspond to the process assumed for the underlying asset price.

Suggested Citation

  • Jay Cao & Jacky Chen & John Hull & Zissis Poulos, 2021. "Deep Hedging of Derivatives Using Reinforcement Learning," Papers 2103.16409, arXiv.org.
  • Handle: RePEc:arx:papers:2103.16409
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2103.16409
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    2. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    3. Boyle, Phelim P & Vorst, Ton, 1992. "Option Replication in Discrete Time with Transaction Costs," Journal of Finance, American Finance Association, vol. 47(1), pages 271-293, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wing Fung Chong & Haoen Cui & Yuxuan Li, 2021. "Pseudo-Model-Free Hedging for Variable Annuities via Deep Reinforcement Learning," Papers 2107.03340, arXiv.org, revised Oct 2022.
    2. Alejandra de la Rica Escudero & Eduardo C. Garrido-Merchan & Maria Coronado-Vaca, 2024. "Explainable Post hoc Portfolio Management Financial Policy of a Deep Reinforcement Learning agent," Papers 2407.14486, arXiv.org.
    3. Federico Giorgi & Stefano Herzel & Paolo Pigato, 2023. "A Reinforcement Learning Algorithm for Trading Commodities," CEIS Research Paper 552, Tor Vergata University, CEIS, revised 18 Feb 2023.
    4. Reilly Pickard & Finn Wredenhagen & Julio DeJesus & Mario Schlener & Yuri Lawryshyn, 2024. "Hedging American Put Options with Deep Reinforcement Learning," Papers 2405.06774, arXiv.org.
    5. Ariel Neufeld & Julian Sester & Mario v{S}iki'c, 2022. "Markov Decision Processes under Model Uncertainty," Papers 2206.06109, arXiv.org, revised Jan 2023.
    6. Vedant Choudhary & Sebastian Jaimungal & Maxime Bergeron, 2023. "FuNVol: A Multi-Asset Implied Volatility Market Simulator using Functional Principal Components and Neural SDEs," Papers 2303.00859, arXiv.org, revised Dec 2023.
    7. Ariel Neufeld & Julian Sester & Mario Šikić, 2023. "Markov decision processes under model uncertainty," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 618-665, July.
    8. Emmanuel Gnabeyeu & Omar Karkar & Imad Idboufous, 2024. "Solving The Dynamic Volatility Fitting Problem: A Deep Reinforcement Learning Approach," Papers 2410.11789, arXiv.org.
    9. Bernhard Hientzsch, 2023. "Reinforcement Learning and Deep Stochastic Optimal Control for Final Quadratic Hedging," Papers 2401.08600, arXiv.org.
    10. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    11. Kang Gao & Stephen Weston & Perukrishnen Vytelingum & Namid R. Stillman & Wayne Luk & Ce Guo, 2023. "Deeper Hedging: A New Agent-based Model for Effective Deep Hedging," Papers 2310.18755, arXiv.org.
    12. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    13. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    14. Chunhui Qiao & Xiangwei Wan, 2024. "Enhancing Black-Scholes Delta Hedging via Deep Learning," Papers 2407.19367, arXiv.org, revised Aug 2024.
    15. Ali Fathi & Bernhard Hientzsch, 2023. "A Comparison of Reinforcement Learning and Deep Trajectory Based Stochastic Control Agents for Stepwise Mean-Variance Hedging," Papers 2302.07996, arXiv.org, revised Nov 2023.
    16. Zoran Stoiljkovic, 2023. "Applying Reinforcement Learning to Option Pricing and Hedging," Papers 2310.04336, arXiv.org.
    17. Jay Cao & Jacky Chen & Soroush Farghadani & John Hull & Zissis Poulos & Zeyu Wang & Jun Yuan, 2022. "Gamma and Vega Hedging Using Deep Distributional Reinforcement Learning," Papers 2205.05614, arXiv.org, revised Jan 2023.
    18. Allan Jonathan da Silva & Jack Baczynski & Leonardo Fagundes de Mello, 2023. "Hedging Interest Rate Options with Reinforcement Learning: an investigation of a heavy-tailed distribution," Business and Management Studies, Redfame publishing, vol. 9(2), pages 1-14, December.
    19. Zheng Gong & Carmine Ventre & John O'Hara, 2021. "The Efficient Hedging Frontier with Deep Neural Networks," Papers 2104.05280, arXiv.org.
    20. Parvin Malekzadeh & Zissis Poulos & Jacky Chen & Zeyu Wang & Konstantinos N. Plataniotis, 2024. "EX-DRL: Hedging Against Heavy Losses with EXtreme Distributional Reinforcement Learning," Papers 2408.12446, arXiv.org, revised Aug 2024.
    21. Xia, Kun & Yang, Xuewei & Zhu, Peng, 2023. "Delta hedging and volatility-price elasticity: A two-step approach," Journal of Banking & Finance, Elsevier, vol. 153(C).
    22. Reilly Pickard & F. Wredenhagen & Y. Lawryshyn, 2024. "Optimizing Deep Reinforcement Learning for American Put Option Hedging," Papers 2405.08602, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monoyios, Michael, 2004. "Option pricing with transaction costs using a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 889-913, February.
    2. Balder, Sven & Brandl, Michael & Mahayni, Antje, 2009. "Effectiveness of CPPI strategies under discrete-time trading," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 204-220, January.
    3. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    4. Wang, Jun & Liang, Jin-Rong & Lv, Long-Jin & Qiu, Wei-Yuan & Ren, Fu-Yao, 2012. "Continuous time Black–Scholes equation with transaction costs in subdiffusive fractional Brownian motion regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 750-759.
    5. Heller, Yuval & Schreiber, Amnon, 2020. "Short-term investments and indices of risk," Theoretical Economics, Econometric Society, vol. 15(3), July.
    6. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    7. Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos Octavio P'erez Mendoza, 2024. "Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information," Papers 2407.21138, arXiv.org.
    8. Dichtl, Hubert & Drobetz, Wolfgang, 2011. "Portfolio insurance and prospect theory investors: Popularity and optimal design of capital protected financial products," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1683-1697, July.
    9. Peter Christoffersen & Ruslan Goyenko & Kris Jacobs & Mehdi Karoui, 2018. "Illiquidity Premia in the Equity Options Market," The Review of Financial Studies, Society for Financial Studies, vol. 31(3), pages 811-851.
    10. Patrice Gaillardetz & Saeb Hachem, 2019. "Risk-Control Strategies," Papers 1908.02228, arXiv.org.
    11. Jinglun Yao & Sabine Laurent & Brice B'enaben, 2017. "Managing Volatility Risk: An Application of Karhunen-Lo\`eve Decomposition and Filtered Historical Simulation," Papers 1710.00859, arXiv.org.
    12. Virmani, Vineet, 2014. "Model Risk in Pricing Path-dependent Derivatives: An Illustration," IIMA Working Papers WP2014-03-22, Indian Institute of Management Ahmedabad, Research and Publication Department.
    13. Scheuenstuhl, Gerhard & Zagst, Rudi, 2008. "Integrated portfolio management with options," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1477-1500, March.
    14. Carr, Peter & Geman, Helyette & Madan, Dilip B., 2001. "Pricing and hedging in incomplete markets," Journal of Financial Economics, Elsevier, vol. 62(1), pages 131-167, October.
    15. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    16. Steve Zymler & Daniel Kuhn & Berç Rustem, 2013. "Worst-Case Value at Risk of Nonlinear Portfolios," Management Science, INFORMS, vol. 59(1), pages 172-188, July.
    17. Lin, Zih-Ying & Chang, Chuang-Chang & Wang, Yaw-Huei, 2018. "The impacts of asymmetric information and short sales on the illiquidity risk premium in the stock option market," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 152-165.
    18. Bas Peeters & Cees L. Dert & André Lucas, 2003. "Black Scholes for Portfolios of Options in Discrete Time: the Price is Right, the Hedge is wrong," Tinbergen Institute Discussion Papers 03-090/2, Tinbergen Institute.
    19. Al–Zhour, Zeyad & Barfeie, Mahdiar & Soleymani, Fazlollah & Tohidi, Emran, 2019. "A computational method to price with transaction costs under the nonlinear Black–Scholes model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 291-301.
    20. Mercurio, Fabio, 2001. "Claim pricing and hedging under market incompleteness and "mean-variance" preferences," European Journal of Operational Research, Elsevier, vol. 133(3), pages 635-652, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.16409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.