FuNVol: A Multi-Asset Implied Volatility Market Simulator using Functional Principal Components and Neural SDEs
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
- Matthias Fengler & Wolfgang Härdle & Christophe Villa, 2003.
"The Dynamics of Implied Volatilities: A Common Principal Components Approach,"
Review of Derivatives Research, Springer, vol. 6(3), pages 179-202, October.
- Fengler, Matthias R. & Härdle, Wolfgang Karl & Villa, Christophe, 2001. "The dynamics of implied volatilities: A common principal components approach," SFB 373 Discussion Papers 2001,38, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Christophe Villa & M.R. Fengler & W.K. Hardle, 2003. "The dynamics of implied volatilities : a common principal components approach," Post-Print halshs-00069509, HAL.
- Magnus Wiese & Lianjun Bai & Ben Wood & Hans Buehler, 2019. "Deep Hedging: Learning to Simulate Equity Option Markets," Papers 1911.01700, arXiv.org.
- Jim Gatheral & Antoine Jacquier, 2014.
"Arbitrage-free SVI volatility surfaces,"
Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 59-71, January.
- Jim Gatheral & Antoine Jacquier, 2012. "Arbitrage-free SVI volatility surfaces," Papers 1204.0646, arXiv.org, revised Mar 2013.
- Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A generative adversarial network approach to calibration of local stochastic volatility models," Papers 2005.02505, arXiv.org, revised Sep 2020.
- Jay Cao & Jacky Chen & John Hull & Zissis Poulos, 2021. "Deep Hedging of Derivatives Using Reinforcement Learning," Papers 2103.16409, arXiv.org.
- Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A Generative Adversarial Network Approach to Calibration of Local Stochastic Volatility Models," Risks, MDPI, vol. 8(4), pages 1-31, September.
- Rama Cont & Jose da Fonseca & Valdo Durrleman, 2002. "Stochastic Models of Implied Volatility Surfaces," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 361-377, July.
- Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
- Matthias Fengler, 2009.
"Arbitrage-free smoothing of the implied volatility surface,"
Quantitative Finance, Taylor & Francis Journals, vol. 9(4), pages 417-428.
- Fengler, Matthias R., 2005. "Arbitrage-free smoothing of the implied volatility surface," SFB 649 Discussion Papers 2005-019, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Shang, Han Lin & Kearney, Fearghal, 2022.
"Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 1025-1049.
- Han Lin Shang & Fearghal Kearney, 2021. "Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces," Papers 2107.14026, arXiv.org.
- Yu Zheng & Yongxin Yang & Bowei Chen, 2019. "Incorporating prior financial domain knowledge into neural networks for implied volatility surface prediction," Papers 1904.12834, arXiv.org, revised May 2021.
- Fengler, Matthias R. & Wang, Qihua, 2003. "Fitting the Smile Revisited: A Least Squares Kernel Estimator for the Implied Volatility Surface," SFB 373 Discussion Papers 2003,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Christa Cuchiero & Eva Flonner & Kevin Kurt, 2024. "Robust financial calibration: a Bayesian approach for neural SDEs," Papers 2409.06551, arXiv.org, revised Sep 2024.
- Kentaro Hoshisashi & Carolyn E. Phelan & Paolo Barucca, 2023. "No-Arbitrage Deep Calibration for Volatility Smile and Skewness," Papers 2310.16703, arXiv.org, revised Jan 2024.
- Mohamed Hamdouche & Pierre Henry-Labordere & Huy^en Pham, 2023. "Generative modeling for time series via Schr{\"o}dinger bridge," Papers 2304.05093, arXiv.org.
- Kentaro Hoshisashi & Carolyn E. Phelan & Paolo Barucca, 2024. "Whack-a-mole Online Learning: Physics-Informed Neural Network for Intraday Implied Volatility Surface," Papers 2411.02375, arXiv.org.
- Herv'e Andr`es & Alexandre Boumezoued & Benjamin Jourdain, 2023. "Implied volatility (also) is path-dependent," Papers 2312.15950, arXiv.org, revised Jun 2024.
- Zacharia Issa & Blanka Horvath & Maud Lemercier & Cristopher Salvi, 2023. "Non-adversarial training of Neural SDEs with signature kernel scores," Papers 2305.16274, arXiv.org.
- Mohamed Hamdouche & Pierre Henry-Labordere & Huyên Pham, 2023. "Generative modeling for time series via Schrödinger bridge," Working Papers hal-04063041, HAL.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
- Wenyong Zhang & Lingfei Li & Gongqiu Zhang, 2021. "A Two-Step Framework for Arbitrage-Free Prediction of the Implied Volatility Surface," Papers 2106.07177, arXiv.org, revised Jan 2022.
- Itkin, Andrey, 2015.
"To sigmoid-based functional description of the volatility smile,"
The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 264-291.
- Andrey Itkin, 2014. "To sigmoid-based functional description of the volatility smile," Papers 1407.0256, arXiv.org, revised Dec 2014.
- Magnus Wiese & Phillip Murray, 2022. "Risk-Neutral Market Simulation," Papers 2202.13996, arXiv.org.
- Blanka Horvath & Josef Teichmann & Žan Žurič, 2021. "Deep Hedging under Rough Volatility," Risks, MDPI, vol. 9(7), pages 1-20, July.
- Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
- repec:hum:wpaper:sfb649dp2005-020 is not listed on IDEAS
- Blanka Horvath & Josef Teichmann & Zan Zuric, 2021. "Deep Hedging under Rough Volatility," Papers 2102.01962, arXiv.org.
- Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Pierre M. Blacque-Florentin & Badr Missaoui, 2015. "Nonparametric and arbitrage-free construction of call surfaces using l1-recovery," Papers 1506.06997, arXiv.org, revised Aug 2016.
- Haoyang Cao & Xin Guo, 2021. "Generative Adversarial Network: Some Analytical Perspectives," Papers 2104.12210, arXiv.org, revised Sep 2021.
- Laurini, Márcio P., 2007. "Imposing No-Arbitrage Conditions In Implied Volatility Surfaces Using Constrained Smoothing Splines," Insper Working Papers wpe_89, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
- Hirbod Assa & Mostafa Pouralizadeh & Abdolrahim Badamchizadeh, 2019. "Sound Deposit Insurance Pricing Using a Machine Learning Approach," Risks, MDPI, vol. 7(2), pages 1-18, April.
- Shengli Chen & Zili Zhang, 2019. "Forecasting Implied Volatility Smile Surface via Deep Learning and Attention Mechanism," Papers 1912.11059, arXiv.org.
- Fengler, Matthias & Hin, Lin-Yee, 2011. "Semi-nonparametric estimation of the call price surface under strike and time-to-expiry no-arbitrage constraints," Economics Working Paper Series 1136, University of St. Gallen, School of Economics and Political Science, revised May 2013.
- Beer, Simone & Braun, Alexander, 2022. "Market-consistent valuation of natural catastrophe risk," Journal of Banking & Finance, Elsevier, vol. 134(C).
- Fengler, Matthias R. & Härdle, Wolfgang Karl & Mammen, Enno, 2005. "A dynamic semiparametric factor model for implied volatility string dynamics," SFB 649 Discussion Papers 2005-020, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Miloš Kopa & Sebastiano Vitali & Tomáš Tichý & Radek Hendrych, 2017. "Implied volatility and state price density estimation: arbitrage analysis," Computational Management Science, Springer, vol. 14(4), pages 559-583, October.
- Magnus Wiese & Ben Wood & Alexandre Pachoud & Ralf Korn & Hans Buehler & Phillip Murray & Lianjun Bai, 2021. "Multi-Asset Spot and Option Market Simulation," Papers 2112.06823, arXiv.org.
- Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019.
"Implied volatility surface predictability: The case of commodity markets,"
Journal of Banking & Finance, Elsevier, vol. 108(C).
- Fearghal Kearney & Han Lin Shang & Lisa Sheenan, 2019. "Implied volatility surface predictability: the case of commodity markets," Papers 1909.11009, arXiv.org.
- Boswijk, H. Peter & Laeven, Roger J.A. & Vladimirov, Evgenii, 2024.
"Estimating option pricing models using a characteristic function-based linear state space representation,"
Journal of Econometrics, Elsevier, vol. 244(1).
- H. Peter Boswijk & Roger J. A. Laeven & Evgenii Vladimirov, 2022. "Estimating Option Pricing Models Using a Characteristic Function-Based Linear State Space Representation," Papers 2210.06217, arXiv.org.
- H. Peter Boswijk & Roger J. A. Laeven & Evgenii Vladimirov, 2022. "Estimating Option Pricing Models Using a Characteristic Function Based Linear State Space Representation," Tinbergen Institute Discussion Papers 22-000/III, Tinbergen Institute.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2023-04-10 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.00859. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.