IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20030090.html
   My bibliography  Save this paper

Black Scholes for Portfolios of Options in Discrete Time: the Price is Right, the Hedge is wrong

Author

Listed:
  • Bas Peeters

    (Faculty of Economics and Business Administration, Vrije Universiteit Amsterdam)

  • Cees L. Dert

    (Faculty of Economics and Business Administration, Vrije Universiteit Amsterdam)

  • André Lucas

    (Faculty of Economics and Business Administration, Vrije Universiteit Amsterdam)

Abstract

Taking a portfolio perspective on option pricing and hedging, we show that within the standard Black-Scholes-Merton framework large portfolios of options can be hedged without risk in discrete time. The nature of the hedge portfolio in the limit of large portfolio size is substantially different from the standard continuous time delta-hedge. The underlying values of the options in our framework are driven by systematic and idiosyncratic risk factors. Instead of linearly (delta) hedging the total risk of each option separately, the correct hedge portfolio in discrete time eliminates linear (delta) as well as second (gamma) and higher order exposures to the systematic risk factor only. The idiosyncratic risk is not hedged, but diversified. Our result shows that preference free valuation of option portfolios using linear assets only is applicable in discrete time as well. The price paid for this result is that the number of securities in the portfolio has to grow indefinitely. This ties the literature on option pricing and hedging closer together with the APT literature in its focus on systematic risk factors. For portfolios of finite size, the optimal hedge strategy makes a trade-off between hedging linear idiosyncratic and higher order systematic risk.

Suggested Citation

  • Bas Peeters & Cees L. Dert & André Lucas, 2003. "Black Scholes for Portfolios of Options in Discrete Time: the Price is Right, the Hedge is wrong," Tinbergen Institute Discussion Papers 03-090/2, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20030090
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/03090.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    2. Antonio S. Mello & Henrik J. Neuhaus, 1998. "A Portfolio Approach to Risk Reduction in Discretely Rebalanced Option Hedges," Management Science, INFORMS, vol. 44(7), pages 921-934, July.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    4. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    5. repec:bla:jfinan:v:53:y:1998:i:3:p:1165-1190 is not listed on IDEAS
    6. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    7. John Lintner, 1965. "Security Prices, Risk, And Maximal Gains From Diversification," Journal of Finance, American Finance Association, vol. 20(4), pages 587-615, December.
    8. Y.M. Kabanov & D.O. Kramkov, 1998. "Asymptotic arbitrage in large financial markets," Finance and Stochastics, Springer, vol. 2(2), pages 143-172.
    9. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    10. Rubinstein, Mark, 1984. "A Simple Formula for the Expected Rate of Return of an Option over a Finite Holding Period," Journal of Finance, American Finance Association, vol. 39(5), pages 1503-1509, December.
    11. Gilster, John E., 1990. "The Systematic Risk of Discretely Rebalanced Option Hedges," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(4), pages 507-516, December.
    12. Boyle, Phelim P & Vorst, Ton, 1992. "Option Replication in Discrete Time with Transaction Costs," Journal of Finance, American Finance Association, vol. 47(1), pages 271-293, March.
    13. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    14. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    15. Boyle, Phelim P. & Emanuel, David, 1980. "Discretely adjusted option hedges," Journal of Financial Economics, Elsevier, vol. 8(3), pages 259-282, September.
    16. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernando Rubio, 2005. "Eficiencia De Mercado, Administracion De Carteras De Fondos Y Behavioural Finance," Finance 0503028, University Library of Munich, Germany, revised 23 Jul 2005.
    2. Dimson, Elroy & Mussavian, Massoud, 1999. "Three centuries of asset pricing," Journal of Banking & Finance, Elsevier, vol. 23(12), pages 1745-1769, December.
    3. Dilip B. Madan & Wim Schoutens & King Wang, 2020. "Bilateral multiple gamma returns: Their risks and rewards," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 1-27, March.
    4. Sonntag, Dominik, 2018. "Die Theorie der fairen geometrischen Rendite [The Theory of Fair Geometric Returns]," MPRA Paper 87082, University Library of Munich, Germany.
    5. Michael Dempsey, 2015. "Stock Markets, Investments and Corporate Behavior:A Conceptual Framework of Understanding," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number p1007, August.
    6. Miklavž Mastinšek, 2006. "Discrete–time delta hedging and the Black–Scholes model with transaction costs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 227-236, October.
    7. Bradford Cornell & Jakša Cvitanić & Levon Goukasian, 2010. "Beliefs regarding fundamental value and optimal investing," Annals of Finance, Springer, vol. 6(1), pages 83-105, January.
    8. Florian Steiger, 2010. "The Impact of Credit Risk and Implied Volatility on Stock Returns," Papers 1005.5538, arXiv.org.
    9. Luca Di Persio & Luca Prezioso & Kai Wallbaum, 2019. "Closed-End Formula for options linked to Target Volatility Strategies," Papers 1902.08821, arXiv.org.
    10. Zhong, Angel, 2018. "Idiosyncratic volatility in the Australian equity market," Pacific-Basin Finance Journal, Elsevier, vol. 50(C), pages 105-125.
    11. Saggese, Pietro & Belmonte, Alessandro & Dimitri, Nicola & Facchini, Angelo & Böhme, Rainer, 2023. "Arbitrageurs in the Bitcoin ecosystem: Evidence from user-level trading patterns in the Mt. Gox exchange platform," Journal of Economic Behavior & Organization, Elsevier, vol. 213(C), pages 251-270.
    12. Linnenluecke, Martina K. & Chen, Xiaoyan & Ling, Xin & Smith, Tom & Zhu, Yushu, 2017. "Research in finance: A review of influential publications and a research agenda," Pacific-Basin Finance Journal, Elsevier, vol. 43(C), pages 188-199.
    13. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    14. Lu Zhang, 2017. "The Investment CAPM," European Financial Management, European Financial Management Association, vol. 23(4), pages 545-603, September.
    15. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    16. Karagiannidis, Iordanis & Vozlyublennaia, Nadia, 2016. "Limits to mutual funds' ability to rely on mean/variance optimization," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 282-292.
    17. Zura Kakushadze & Willie Yu, 2016. "Multifactor Risk Models and Heterotic CAPM," Papers 1602.04902, arXiv.org, revised Mar 2016.
    18. Eom, Cheoljun, 2017. "Two-faced property of a market factor in asset pricing and diversification effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 190-199.
    19. repec:wyi:journl:002108 is not listed on IDEAS
    20. Fracasso, Laís Martins & Müller, Fernanda Maria & Ramos, Henrique Pinto & Righi, Marcelo Brutti, 2023. "Is there a risk premium? Evidence from thirteen measures," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 182-199.
    21. Schuhmacher, Frank & Auer, Benjamin R., 2014. "Sufficient conditions under which SSD- and MR-efficient sets are identical," European Journal of Operational Research, Elsevier, vol. 239(3), pages 756-763.

    More about this item

    Keywords

    Option Hedging; Discrete Time; Portfolio Approach; Preference Free Valuation; Hedging Errors; Arbitrage Pricing Theory;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20030090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.