IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.08602.html
   My bibliography  Save this paper

Optimizing Deep Reinforcement Learning for American Put Option Hedging

Author

Listed:
  • Reilly Pickard
  • F. Wredenhagen
  • Y. Lawryshyn

Abstract

This paper contributes to the existing literature on hedging American options with Deep Reinforcement Learning (DRL). The study first investigates hyperparameter impact on hedging performance, considering learning rates, training episodes, neural network architectures, training steps, and transaction cost penalty functions. Results highlight the importance of avoiding certain combinations, such as high learning rates with a high number of training episodes or low learning rates with few training episodes and emphasize the significance of utilizing moderate values for optimal outcomes. Additionally, the paper warns against excessive training steps to prevent instability and demonstrates the superiority of a quadratic transaction cost penalty function over a linear version. This study then expands upon the work of Pickard et al. (2024), who utilize a Chebyshev interpolation option pricing method to train DRL agents with market calibrated stochastic volatility models. While the results of Pickard et al. (2024) showed that these DRL agents achieve satisfactory performance on empirical asset paths, this study introduces a novel approach where new agents at weekly intervals to newly calibrated stochastic volatility models. Results show DRL agents re-trained using weekly market data surpass the performance of those trained solely on the sale date. Furthermore, the paper demonstrates that both single-train and weekly-train DRL agents outperform the Black-Scholes Delta method at transaction costs of 1% and 3%. This practical relevance suggests that practitioners can leverage readily available market data to train DRL agents for effective hedging of options in their portfolios.

Suggested Citation

  • Reilly Pickard & F. Wredenhagen & Y. Lawryshyn, 2024. "Optimizing Deep Reinforcement Learning for American Put Option Hedging," Papers 2405.08602, arXiv.org.
  • Handle: RePEc:arx:papers:2405.08602
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.08602
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.08602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.