IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.04218.html
   My bibliography  Save this paper

Hedging with Sparse Reward Reinforcement Learning

Author

Listed:
  • Yiheng Ding
  • Gangnan Yuan
  • Dewei Zuo
  • Ting Gao

Abstract

Derivatives, as a critical class of financial instruments, isolate and trade the price attributes of risk assets such as stocks, commodities, and indices, aiding risk management and enhancing market efficiency. However, traditional hedging models, constrained by assumptions such as continuous trading and zero transaction costs, fail to satisfy risk control requirements in complex and uncertain real-world markets. With advances in computing technology and deep learning, data-driven trading strategies are becoming increasingly prevalent. This thesis proposes a derivatives hedging framework integrating deep learning and reinforcement learning. The framework comprises a probabilistic forecasting model and a hedging agent, enabling market probability prediction, derivative pricing, and hedging. Specifically, we design a spatiotemporal attention-based probabilistic financial time series forecasting Transformer to address the scarcity of derivatives hedging data. A low-rank attention mechanism compresses high-dimensional assets into a low-dimensional latent space, capturing nonlinear asset relationships. The Transformer models sequential dependencies within this latent space, improving market probability forecasts and constructing an online training environment for downstream hedging tasks. Additionally, we incorporate generalized geometric Brownian motion to develop a risk-neutral pricing approach for derivatives. We model derivatives hedging as a reinforcement learning problem with sparse rewards and propose a behavior cloning-based recurrent proximal policy optimization (BC-RPPO) algorithm. This pretraining-finetuning framework significantly enhances the hedging agent's performance. Numerical experiments in the U.S. and Chinese financial markets demonstrate our method's superiority over traditional approaches.

Suggested Citation

  • Yiheng Ding & Gangnan Yuan & Dewei Zuo & Ting Gao, 2025. "Hedging with Sparse Reward Reinforcement Learning," Papers 2503.04218, arXiv.org.
  • Handle: RePEc:arx:papers:2503.04218
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.04218
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.04218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.