IDEAS home Printed from https://ideas.repec.org/a/rfa/bmsjnl/v9y2023i2p14.html
   My bibliography  Save this article

Hedging Interest Rate Options with Reinforcement Learning: an investigation of a heavy-tailed distribution

Author

Listed:
  • Allan Jonathan da Silva
  • Jack Baczynski
  • Leonardo Fagundes de Mello

Abstract

Purpose- The study intends to model an interest rate index option using a heavy-tailed distribution. The goal is to calculate the interest rate path-dependent option prices that are consistent with market data and to develop a reinforcement learning strategy to discretely hedge the position considering transaction costs. Methodology- This paper presents a mathematical framework to calculate the price of interest rate path-dependent options. The research adapted a Fourier cosine series formula to employ the characteristic function of the present value of the forward index, which is modeled as a variance-gamma process and uses deep Q-learning to hedge such options. Findings- There is market evidence that the implied volatility curve is not flat. The study demonstrated that the variance-gamma process generates an increasing volatility smile, which is consistent with market observations. Additionally, hedging results show that the path-dependent options generated from the variance-gamma process can be efficiently hedged with advanced Q-learning techniques. Research limitations/implications- The study comprised only the variance-gamma process. Other probability distributions, such as the Normal Inverse Gaussian model, should be investigated. Practical implications- This study reveals which type of probability distribution should be present in a pricing engine to be consistent with implied volatilities. The approach provided here can assist managers in evaluating and comprehending market pricing behavior as well as achieving discrete hedging with costs. Originality- The paper addressed the merging of a fast pricing method for the interest rate options with a heavy-tailed distribution and the discrete interest rate derivatives hedging with reinforcement learning.

Suggested Citation

  • Allan Jonathan da Silva & Jack Baczynski & Leonardo Fagundes de Mello, 2023. "Hedging Interest Rate Options with Reinforcement Learning: an investigation of a heavy-tailed distribution," Business and Management Studies, Redfame publishing, vol. 9(2), pages 1-14, December.
  • Handle: RePEc:rfa:bmsjnl:v:9:y:2023:i:2:p:14
    as

    Download full text from publisher

    File URL: https://redfame.com/journal/index.php/bms/article/download/6515/6417
    Download Restriction: no

    File URL: https://redfame.com/journal/index.php/bms/article/view/6515
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Caio Almeida & Jos� Vicente, 2012. "Term structure movements implicit in Asian option prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 119-134, February.
    3. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    4. Jay Cao & Jacky Chen & John Hull & Zissis Poulos, 2021. "Deep Hedging of Derivatives Using Reinforcement Learning," Papers 2103.16409, arXiv.org.
    5. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    6. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Hull, John & White, Alan, 1993. "One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(2), pages 235-254, June.
    9. Michel Vellekoop & Hans Nieuwenhuis, 2007. "On option pricing models in the presence of heavy tails," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 563-573.
    10. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    11. Alan De Genaro & Marco Avellaneda, 2018. "Pricing Interest Rate Derivatives Under Monetary Changes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-28, September.
    12. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Allan Jonathan da Silva & Jack Baczynski, 2024. "Exploring non-analytical affine jump-diffusion models for path-dependent interest rate derivatives," Computational Management Science, Springer, vol. 21(1), pages 1-32, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    3. Philippe Raimbourg & Paul Zimmermann, 2022. "Is normal backwardation normal? Valuing financial futures with a local index-rate covariance," Post-Print hal-04011013, HAL.
    4. Coutant, Sophie & Jondeau, Eric & Rockinger, Michael, 2001. "Reading PIBOR futures options smiles: The 1997 snap election," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1957-1987, November.
    5. Arismendi-Zambrano, Juan & Belitsky, Vladimir & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2022. "The implications of dependence, tail dependence, and bounds’ measures for counterparty credit risk pricing," Journal of Financial Stability, Elsevier, vol. 58(C).
    6. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, August.
    7. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    8. J. C. Arismendi-Zambrano & Vladimir Belitsky & Vinicius Amorim Sobreiro & Herbert Kimura, 2020. "The Implications of Tail Dependency Measures for Counterparty Credit Risk Pricing," Economics Department Working Paper Series n306-20.pdf, Department of Economics, National University of Ireland - Maynooth.
    9. Raimbourg, Philippe & Zimmermann, Paul, 2022. "Is normal backwardation normal? Valuing financial futures with a local index-rate covariance," European Journal of Operational Research, Elsevier, vol. 298(1), pages 351-367.
    10. Allan Jonathan da Silva & Jack Baczynski & José Valentim Machado Vicente, 2020. "Efficient Solutions for Pricing and Hedging Interest Rate Asian Options," Working Papers Series 513, Central Bank of Brazil, Research Department.
    11. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    12. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    13. Ako Doffou & Jimmy E. Hilliard, 2001. "Pricing Currency Options Under Stochastic Interest Rates And Jump-Diffusion Processes," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 24(4), pages 565-585, December.
    14. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    15. Kristensen, Dennis, 2008. "Estimation of partial differential equations with applications in finance," Journal of Econometrics, Elsevier, vol. 144(2), pages 392-408, June.
    16. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2015. "Pricing of Long-dated Commodity Derivatives with Stochastic Volatility and Stochastic Interest Rates," Research Paper Series 366, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    18. repec:wyi:journl:002108 is not listed on IDEAS
    19. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    20. Juan M. Moraleda & Ton Vorst, 1996. "The Valuation of Interest Rate Derivatives: Empirical Evidence from the Spanish Market," Tinbergen Institute Discussion Papers 96-170/2, Tinbergen Institute.
    21. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2007, January-A.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rfa:bmsjnl:v:9:y:2023:i:2:p:14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Redfame publishing (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.