IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v127y2019icp291-301.html
   My bibliography  Save this article

A computational method to price with transaction costs under the nonlinear Black–Scholes model

Author

Listed:
  • Al–Zhour, Zeyad
  • Barfeie, Mahdiar
  • Soleymani, Fazlollah
  • Tohidi, Emran

Abstract

More realistic models in option pricing are based on nonlinear modifications of the well–known Black–Scholes PDE due to considering other factors such as transaction costs and risks from an unprotected portfolio. The aim of this research is to price a nonlinear volatility model. The new approach leads to sparse matrices of second order of convergence after a special semi–discretization. The resulting system of equations is time–varying. Accordingly, an implicit time–stepping method is applied with quadratical accuracy, which is not as step–size sensitive as the commonly–used explicit ones. It is discussed that under what conditions the overall scheme is time–stable. Numerical results are given to verify the robustness and usefulness of our method in contrast to the commonly–used methods of the literature for this task.

Suggested Citation

  • Al–Zhour, Zeyad & Barfeie, Mahdiar & Soleymani, Fazlollah & Tohidi, Emran, 2019. "A computational method to price with transaction costs under the nonlinear Black–Scholes model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 291-301.
  • Handle: RePEc:eee:chsofr:v:127:y:2019:i:c:p:291-301
    DOI: 10.1016/j.chaos.2019.06.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919302450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.06.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Monoyios, Michael, 2004. "Option pricing with transaction costs using a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 889-913, February.
    2. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    3. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "Risk preference, option pricing and portfolio hedging with proportional transaction costs," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 111-130.
    4. Javier Frutos & Víctor Gatón, 2017. "Chebyshev reduced basis function applied to option valuation," Computational Management Science, Springer, vol. 14(4), pages 465-491, October.
    5. Javier de Frutos & Victor Gaton, 2017. "Chebyshev Reduced Basis Function applied to Option Valuation," Papers 1701.01429, arXiv.org, revised Jun 2017.
    6. Boyle, Phelim P & Vorst, Ton, 1992. "Option Replication in Discrete Time with Transaction Costs," Journal of Finance, American Finance Association, vol. 47(1), pages 271-293, March.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Halil Mete Soner & Guy Barles, 1998. "Option pricing with transaction costs and a nonlinear Black-Scholes equation," Finance and Stochastics, Springer, vol. 2(4), pages 369-397.
    9. Ballestra, Luca Vincenzo & Cecere, Liliana, 2016. "A numerical method to estimate the parameters of the CEV model implied by American option prices: Evidence from NYSE," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 100-106.
    10. Lesmana, Donny Citra & Wang, Song, 2015. "Penalty approach to a nonlinear obstacle problem governing American put option valuation under transaction costs," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 318-330.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lyu, Jisang & Park, Eunchae & Kim, Sangkwon & Lee, Wonjin & Lee, Chaeyoung & Yoon, Sungha & Park, Jintae & Kim, Junseok, 2021. "Optimal non-uniform finite difference grids for the Black–Scholes equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 690-704.
    2. Chaeyoung Lee & Soobin Kwak & Youngjin Hwang & Junseok Kim, 2023. "Accurate and Efficient Finite Difference Method for the Black–Scholes Model with No Far-Field Boundary Conditions," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 1207-1224, March.
    3. Bahareh Afhami & Mohsen Rezapour & Mohsen Madadi & Vahed Maroufy, 2021. "Dynamic investment portfolio optimization using a Multivariate Merton Model with Correlated Jump Risk," Papers 2104.11594, arXiv.org.
    4. Zhang, Ruixiaoxiao & Shimada, Koji & Ni, Meng & Shen, Geoffrey Q.P. & Wong, Johnny K.W., 2020. "Low or No subsidy? Proposing a regional power grid based wind power feed-in tariff benchmark price mechanism in China," Energy Policy, Elsevier, vol. 146(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Tze Leung & Lim, Tiong Wee, 2009. "Option hedging theory under transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 33(12), pages 1945-1961, December.
    2. Nicola Cantarutti & Jo~ao Guerra & Manuel Guerra & Maria do Ros'ario Grossinho, 2016. "Option pricing in exponential L\'evy models with transaction costs," Papers 1611.00389, arXiv.org, revised Nov 2019.
    3. M. Rezaei & A. R. Yazdanian & A. Ashrafi & S. M. Mahmoudi, 2022. "Numerically Pricing Nonlinear Time-Fractional Black–Scholes Equation with Time-Dependent Parameters Under Transaction Costs," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 243-280, June.
    4. Lv, Longjin & Xiao, Jianbin & Fan, Liangzhong & Ren, Fuyao, 2016. "Correlated continuous time random walk and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 100-107.
    5. Lesmana, Donny Citra & Wang, Song, 2015. "Penalty approach to a nonlinear obstacle problem governing American put option valuation under transaction costs," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 318-330.
    6. Jacques, Sébastien & Lai, Van Son & Soumaré, Issouf, 2011. "Synthetizing a debt guarantee: Super-replication versus utility approach," International Review of Financial Analysis, Elsevier, vol. 20(1), pages 27-40, January.
    7. Stefano Baccarin, 2019. "Static use of options in dynamic portfolio optimization under transaction costs and solvency constraints," Working papers 063, Department of Economics, Social Studies, Applied Mathematics and Statistics (Dipartimento di Scienze Economico-Sociali e Matematico-Statistiche), University of Torino.
    8. Wei, Dongming & Erlangga, Yogi Ahmad & Zhumakhanova, Gulzat, 2024. "A finite element approach to the numerical solutions of Leland’s model," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 582-593.
    9. Wang, Jun & Liang, Jin-Rong & Lv, Long-Jin & Qiu, Wei-Yuan & Ren, Fu-Yao, 2012. "Continuous time Black–Scholes equation with transaction costs in subdiffusive fractional Brownian motion regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 750-759.
    10. Lu, Xiaoping & Yan, Dong & Zhu, Song-Ping, 2022. "Optimal exercise of American puts with transaction costs under utility maximization," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    11. Pedro Polvora & Daniel Sevcovic, 2021. "Utility indifference Option Pricing Model with a Non-Constant Risk-Aversion under Transaction Costs and Its Numerical Approximation," Papers 2108.12598, arXiv.org.
    12. Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos Octavio P'erez Mendoza, 2024. "Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information," Papers 2407.21138, arXiv.org.
    13. Lin, Zih-Ying & Chang, Chuang-Chang & Wang, Yaw-Huei, 2018. "The impacts of asymmetric information and short sales on the illiquidity risk premium in the stock option market," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 152-165.
    14. Siu, Tak Kuen, 2023. "European option pricing with market frictions, regime switches and model uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 233-250.
    15. Perrakis, Stylianos & Lefoll, Jean, 2000. "Option pricing and replication with transaction costs and dividends," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1527-1561, October.
    16. Kanne, Stefan & Korn, Olaf & Uhrig-Homburg, Marliese, 2016. "Stock Illiquidity, option prices, and option returns," CFR Working Papers 16-08, University of Cologne, Centre for Financial Research (CFR).
    17. Clewlow, Les & Hodges, Stewart, 1997. "Optimal delta-hedging under transactions costs," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1353-1376, June.
    18. Joel Vanden, 2006. "Exact Superreplication Strategies for a Class of Derivative Assets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 61-87.
    19. Kyungsub Lee & Byoung Ki Seo, 2021. "Analytic formula for option margin with liquidity costs under dynamic delta hedging," Papers 2103.15302, arXiv.org.
    20. Entrop, Oliver & Fischer, Georg, 2019. "Hedging costs and joint determinants of premiums and spreads in structured financial products," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-34-19, University of Passau, Faculty of Business and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:127:y:2019:i:c:p:291-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.