IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1710.00859.html
   My bibliography  Save this paper

Managing Volatility Risk: An Application of Karhunen-Lo\`eve Decomposition and Filtered Historical Simulation

Author

Listed:
  • Jinglun Yao
  • Sabine Laurent
  • Brice B'enaben

Abstract

Implied volatilities form a well-known structure of smile or surface which accommodates the Bachelier model and observed market prices of interest rate options. For the swaptions that we study, three parameters are taken into account for indexing the implied volatilities and form a "volatility cube": strike (or moneyness), time to maturity of the option contract, duration of the underlying swap contract. It should be noted that the implied volatility structure changes across time, which makes it important to study its dynamics in order to well manage the volatility risk. As volatilities are correlated across the cube, it is preferable to decompose the dynamics on orthogonal principal components, which is the idea of Karhunen-Lo\`eve decomposition that we have adopted in the article. The projections on principal components are investigated by Filtered Historical Simulation in order to predict the Value at Risk (VaR), which is then examined by standard tests and non-arbitrage condition to ensure its appropriateness.

Suggested Citation

  • Jinglun Yao & Sabine Laurent & Brice B'enaben, 2017. "Managing Volatility Risk: An Application of Karhunen-Lo\`eve Decomposition and Filtered Historical Simulation," Papers 1710.00859, arXiv.org.
  • Handle: RePEc:arx:papers:1710.00859
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1710.00859
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christopherson, Jon A & Ferson, Wayne E & Glassman, Debra A, 1998. "Conditioning Manager Alphas on Economic Information: Another Look at the Persistence of Performance," The Review of Financial Studies, Society for Financial Studies, vol. 11(1), pages 111-142.
    2. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    3. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Do Call Prices and the Underlying Stock Always Move in the Same Direction?," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 549-584.
    4. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    5. Giovanni Barone‐Adesi & Kostas Giannopoulos & Les Vosper, 1999. "VaR without correlations for portfolios of derivative securities," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(5), pages 583-602, August.
    6. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    7. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    2. Bastien Baldacci, 2020. "High-frequency dynamics of the implied volatility surface," Papers 2012.10875, arXiv.org.
    3. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    4. Makushkin, Mikhail & Lapshin, Victor, 2023. "Dynamic Nelson–Siegel model for market risk estimation of bonds: Practical implementation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 69, pages 5-27.
    5. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    6. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
    7. Lin, Chu-Hsiung & Changchien, Chang-Cheng & Kao, Tzu-Chuan & Kao, Wei-Shun, 2014. "High-order moments and extreme value approach for value-at-risk," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 421-434.
    8. repec:hum:wpaper:sfb649dp2005-020 is not listed on IDEAS
    9. Daniel Velásquez-Gaviria & Andrés Mora-Valencia & Javier Perote, 2020. "A Comparison of the Risk Quantification in Traditional and Renewable Energy Markets," Energies, MDPI, vol. 13(11), pages 1-42, June.
    10. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    11. Le, Trung H., 2020. "Forecasting value at risk and expected shortfall with mixed data sampling," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1362-1379.
    12. Enrique Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2021. "Backtesting expected shortfall for world stock index ETFs with extreme value theory and Gram–Charlier mixtures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4163-4189, July.
    13. Jacinto Marabel Romo, 2012. "Volatility Regimes For The Vix Index," Revista de Economia Aplicada, Universidad de Zaragoza, Departamento de Estructura Economica y Economia Publica, vol. 20(2), pages 111-134, Autumn.
    14. Su, Jung-Bin, 2014. "Empirical analysis of long memory, leverage, and distribution effects for stock market risk estimates," The North American Journal of Economics and Finance, Elsevier, vol. 30(C), pages 1-39.
    15. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Value-at-risk methodologies for effective energy portfolio risk management," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 197-212.
    16. Stephane Crepey, 2004. "Delta-hedging vega risk?," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 559-579.
    17. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    18. Trung H. Le, 2024. "Forecasting VaR and ES in emerging markets: The role of time‐varying higher moments," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 402-414, March.
    19. Mark Kamstra & Moshe Milevsky, 2005. "Waiting for returns: using space-time duality to calibrate financial diffusions," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 237-244.
    20. Jung-Bin Su, 2014. "How to mitigate the impact of inappropriate distributional settings when the parametric value-at-risk approach is used," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 305-325, February.
    21. Fernanda Maria Müller & Marcelo Brutti Righi, 2024. "Comparison of Value at Risk (VaR) Multivariate Forecast Models," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 75-110, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1710.00859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.