IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.17359.html
   My bibliography  Save this paper

Limit Order Book Simulations: A Review

Author

Listed:
  • Konark Jain
  • Nick Firoozye
  • Jonathan Kochems
  • Philip Treleaven

Abstract

Limit Order Books (LOBs) serve as a mechanism for buyers and sellers to interact with each other in the financial markets. Modelling and simulating LOBs is quite often necessary for calibrating and fine-tuning the automated trading strategies developed in algorithmic trading research. The recent AI revolution and availability of faster and cheaper compute power has enabled the modelling and simulations to grow richer and even use modern AI techniques. In this review we examine the various kinds of LOB simulation models present in the current state of the art. We provide a classification of the models on the basis of their methodology and provide an aggregate view of the popular stylized facts used in the literature to test the models. We additionally provide a focused study of price impact's presence in the models since it is one of the more crucial phenomena to model in algorithmic trading. Finally, we conduct a comparative analysis of various qualities of fits of these models and how they perform when tested against empirical data.

Suggested Citation

  • Konark Jain & Nick Firoozye & Jonathan Kochems & Philip Treleaven, 2024. "Limit Order Book Simulations: A Review," Papers 2402.17359, arXiv.org, revised Mar 2024.
  • Handle: RePEc:arx:papers:2402.17359
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.17359
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thierry Foucault & Ohad Kadan & Eugene Kandel, 2005. "Limit Order Book as a Market for Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1171-1217.
    2. A. Chakraborti & I. Muni-Toke & M. Patriarca & F. Abergel, 2011. "Econophysics Review : II. Agent-based models," Post-Print hal-03332946, HAL.
    3. Adrian Dragulescu & Victor Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 443-453.
    4. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    5. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2014. "The Price Impact of Order Book Events," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 47-88.
    6. Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2020. "Quant GANs: deep generation of financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1419-1440, September.
    7. Weibing Huang & Charles-Albert Lehalle & Mathieu Rosenbaum, 2015. "Simulating and Analyzing Order Book Data: The Queue-Reactive Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 107-122, March.
    8. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Papers 1803.06917, arXiv.org.
    9. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    10. Zihao Zhang & Bryan Lim & Stefan Zohren, 2021. "Deep Learning for Market by Order Data," Papers 2102.08811, arXiv.org, revised Jul 2021.
    11. Emmanuel Bacry & Thibault Jaisson & Jean--François Muzy, 2016. "Estimation of slowly decreasing Hawkes kernels: application to high-frequency order book dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1179-1201, August.
    12. Ulrich Horst & Dorte Kreher, 2017. "Second order approximations for limit order books," Papers 1708.07394, arXiv.org, revised Mar 2018.
    13. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    14. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 251-256.
    15. Hugh Luckock, 2003. "A steady-state model of the continuous double auction," Quantitative Finance, Taylor & Francis Journals, vol. 3(5), pages 385-404.
    16. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Marked Hawkes process modeling of price dynamics and volatility estimation," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 174-200.
    17. Matthias Kirchner, 2017. "An estimation procedure for the Hawkes process," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 571-595, April.
    18. José Da Fonseca & Riadh Zaatour, 2014. "Hawkes Process: Fast Calibration, Application to Trade Clustering, and Diffusive Limit," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(6), pages 548-579, June.
    19. Eric Smith & J Doyne Farmer & Laszlo Gillemot & Supriya Krishnamurthy, 2003. "Statistical theory of the continuous double auction," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 481-514.
    20. Ulrich Horst & Dörte Kreher, 2018. "Second order approximations for limit order books," Finance and Stochastics, Springer, vol. 22(4), pages 827-877, October.
    21. Alan G. Hawkes, 2018. "Hawkes processes and their applications to finance: a review," Quantitative Finance, Taylor & Francis Journals, vol. 18(2), pages 193-198, February.
    22. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2022. "State-dependent Hawkes processes and their application to limit order book modelling," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 563-583, March.
    23. Zihao Zhang & Bryan Lim & Stefan Zohren, 2021. "Deep Learning for Market by Order Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 28(1), pages 79-95, January.
    24. Ulrich Horst & Michael Paulsen, 2017. "A Law of Large Numbers for Limit Order Books," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1280-1312, November.
    25. Matthias Kirchner & Silvan Vetter, 2022. "Hawkes model specification for limit order books," The European Journal of Finance, Taylor & Francis Journals, vol. 28(7), pages 642-662, May.
    26. Ben Hambly & Jasdeep Kalsi & James Newbury, 2020. "Limit Order Books, Diffusion Approximations and Reflected SPDEs: From Microscopic to Macroscopic Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(1-2), pages 132-170, July.
    27. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    28. Jean-Philippe Bouchaud & Marc Mezard & Marc Potters, 2002. "Statistical properties of stock order books: empirical results and models," Science & Finance (CFM) working paper archive 0203511, Science & Finance, Capital Fund Management.
    29. Marcello Rambaldi & Emmanuel Bacry & Fabrizio Lillo, 2017. "The role of volume in order book dynamics: a multivariate Hawkes process analysis," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 999-1020, July.
    30. Rama Cont & Marvin S. Mueller, 2019. "A stochastic partial differential equation model for limit order book dynamics," Papers 1904.03058, arXiv.org, revised May 2021.
    31. Kaj Nyström & Changyong Zhang, 2022. "Hawkes-based models for high frequency financial data," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(10), pages 2168-2185, October.
    32. Marc Potters & Jean-Philippe Bouchaud, 2002. "More statistical properties of order books and price impact," Science & Finance (CFM) working paper archive 0210710, Science & Finance, Capital Fund Management.
    33. Bruno Biais & Pierre Hillion & Chester Spatt, 1999. "Price Discovery and Learning during the Preopening Period in the Paris Bourse," Journal of Political Economy, University of Chicago Press, vol. 107(6), pages 1218-1248, December.
    34. Korolev, V.Yu. & Chertok, A.V. & Korchagin, A.Yu. & Zeifman, A.I., 2015. "Modeling high-frequency order flow imbalance by functional limit theorems for two-sided risk processes," Applied Mathematics and Computation, Elsevier, vol. 253(C), pages 224-241.
    35. Rama Cont & Mihai Cucuringu & Vacslav Glukhov & Felix Prenzel, 2023. "Analysis and modeling of client order flow in limit order markets," Quantitative Finance, Taylor & Francis Journals, vol. 23(2), pages 187-205, February.
    36. Frank Kelly & Elena Yudovina, 2018. "A Markov Model of a Limit Order Book: Thresholds, Recurrence, and Trading Strategies," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 181-203, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenkai Wang & Junji Ren & Peng Yang, 2024. "Alleviating Non-identifiability: a High-fidelity Calibration Objective for Financial Market Simulation with Multivariate Time Series Data," Papers 2407.16566, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Bergault & Enzo Cogn'eville, 2024. "Simulating and analyzing a sparse order book: an application to intraday electricity markets," Papers 2410.06839, arXiv.org.
    2. Peng Wu & Marcello Rambaldi & Jean-Franc{c}ois Muzy & Emmanuel Bacry, 2019. "Queue-reactive Hawkes models for the order flow," Papers 1901.08938, arXiv.org.
    3. Johannes Bleher & Michael Bleher & Thomas Dimpfl, 2020. "From orders to prices: A stochastic description of the limit order book to forecast intraday returns," Papers 2004.11953, arXiv.org, revised May 2021.
    4. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    5. Cassandra Milbradt & Dorte Kreher, 2022. "A cross-border market model with limited transmission capacities," Papers 2207.01939, arXiv.org, revised May 2023.
    6. Rama Cont & Marvin S. Mueller, 2019. "A stochastic partial differential equation model for limit order book dynamics," Papers 1904.03058, arXiv.org, revised May 2021.
    7. Rama Cont & Pierre Degond & Xuan Lifan, 2023. "A mathematical framework for modelling order book dynamics," Working Papers hal-03968767, HAL.
    8. Mohammad Zare & Omid Naghshineh Arjmand & Erfan Salavati & Adel Mohammadpour, 2021. "An Agent‐Based model for Limit Order Book: Estimation and simulation," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1112-1121, January.
    9. Julius Bonart & Martin D. Gould, 2017. "Latency and liquidity provision in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1601-1616, October.
    10. Peng Wu & Marcello Rambaldi & Jean-François Muzy & Emmanuel Bacry, 2021. "Queue-reactive Hawkes models for the order flow," Working Papers hal-02409073, HAL.
    11. Rama Cont & Pierre Degond & Lifan Xuan, 2023. "A mathematical framework for modelling order book dynamics," Papers 2302.01169, arXiv.org.
    12. Pankaj Kumar, 2021. "Deep Hawkes Process for High-Frequency Market Making," Papers 2109.15110, arXiv.org.
    13. Rama Cont & Marvin Muller, 2019. "A Stochastic Pde Model For Limit Order Book Dynamics," Working Papers hal-02090449, HAL.
    14. Iori, G. & Porter, J., 2012. "Agent-Based Modelling for Financial Markets," Working Papers 12/08, Department of Economics, City University London.
    15. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    16. A. O. Glekin & A. Lykov & K. L. Vaninsky, 2014. "On Simulation of Various Effects in Consolidated Order Book," Papers 1402.4150, arXiv.org.
    17. Hai-Chuan Xu & Wei Chen & Xiong Xiong & Wei Zhang & Wei-Xing Zhou & H Eugene Stanley, 2016. "Limit-order book resiliency after effective market orders: Spread, depth and intensity," Papers 1602.00731, arXiv.org, revised Feb 2017.
    18. Xuefeng Gao & S. J. Deng, 2014. "Hydrodynamic limit of order book dynamics," Papers 1411.7502, arXiv.org, revised Feb 2016.
    19. Mike, Szabolcs & Farmer, J. Doyne, 2008. "An empirical behavioral model of liquidity and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 200-234, January.
    20. Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.17359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.