IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1906.04404.html
   My bibliography  Save this paper

Extending Deep Learning Models for Limit Order Books to Quantile Regression

Author

Listed:
  • Zihao Zhang
  • Stefan Zohren
  • Stephen Roberts

Abstract

We showcase how Quantile Regression (QR) can be applied to forecast financial returns using Limit Order Books (LOBs), the canonical data source of high-frequency financial time-series. We develop a deep learning architecture that simultaneously models the return quantiles for both buy and sell positions. We test our model over millions of LOB updates across multiple different instruments on the London Stock Exchange. Our results suggest that the proposed network not only delivers excellent performance but also provides improved prediction robustness by combining quantile estimates.

Suggested Citation

  • Zihao Zhang & Stefan Zohren & Stephen Roberts, 2019. "Extending Deep Learning Models for Limit Order Books to Quantile Regression," Papers 1906.04404, arXiv.org.
  • Handle: RePEc:arx:papers:1906.04404
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1906.04404
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anthony Coache & Sebastian Jaimungal & 'Alvaro Cartea, 2022. "Conditionally Elicitable Dynamic Risk Measures for Deep Reinforcement Learning," Papers 2206.14666, arXiv.org, revised May 2023.
    2. Antonio Briola & Jeremy Turiel & Riccardo Marcaccioli & Alvaro Cauderan & Tomaso Aste, 2021. "Deep Reinforcement Learning for Active High Frequency Trading," Papers 2101.07107, arXiv.org, revised Aug 2023.
    3. Zihao Zhang & Stefan Zohren & Stephen Roberts, 2019. "Deep Reinforcement Learning for Trading," Papers 1911.10107, arXiv.org.
    4. Zihao Zhang & Stefan Zohren & Stephen Roberts, 2020. "Deep Learning for Portfolio Optimization," Papers 2005.13665, arXiv.org, revised Jan 2021.
    5. Zihao Zhang & Bryan Lim & Stefan Zohren, 2021. "Deep Learning for Market by Order Data," Papers 2102.08811, arXiv.org, revised Jul 2021.
    6. Antonio Briola & Jeremy Turiel & Tomaso Aste, 2020. "Deep Learning modeling of Limit Order Book: a comparative perspective," Papers 2007.07319, arXiv.org, revised Oct 2020.
    7. Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
    8. Zihao Zhang & Stefan Zohren, 2021. "Multi-Horizon Forecasting for Limit Order Books: Novel Deep Learning Approaches and Hardware Acceleration using Intelligent Processing Units," Papers 2105.10430, arXiv.org, revised Aug 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.04404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.