IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v40y2024i4p1587-1621.html
   My bibliography  Save this article

The short-term predictability of returns in order book markets: A deep learning perspective

Author

Listed:
  • Lucchese, Lorenzo
  • Pakkanen, Mikko S.
  • Veraart, Almut E.D.

Abstract

This paper uses deep learning techniques to conduct a systematic large-scale analysis of order book-driven predictability in high-frequency returns. First, we introduce a new and robust representation of the order book, the volume representation. Next, we conduct an extensive empirical experiment to address various questions regarding predictability. We investigate if and how far ahead there is predictability, the importance of a robust data representation, the advantages of multi-horizon modeling, and the presence of universal trading patterns. We use model confidence sets, which provide a formalized statistical inference framework well suited to answer these questions. Our findings show that at high frequencies, predictability in mid-price returns is not just present but ubiquitous. The performance of the deep learning models is strongly dependent on the choice of order book representation, and in this respect, the volume representation appears to have multiple practical advantages.

Suggested Citation

  • Lucchese, Lorenzo & Pakkanen, Mikko S. & Veraart, Almut E.D., 2024. "The short-term predictability of returns in order book markets: A deep learning perspective," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1587-1621.
  • Handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1587-1621
    DOI: 10.1016/j.ijforecast.2024.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024000062
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1587-1621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.