IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2012.13710.html
   My bibliography  Save this paper

Analysis of Randomized Experiments with Network Interference and Noncompliance

Author

Listed:
  • Bora Kim

Abstract

Randomized experiments have become a standard tool in economics. In analyzing randomized experiments, the traditional approach has been based on the Stable Unit Treatment Value (SUTVA: \cite{rubin}) assumption which dictates that there is no interference between individuals. However, the SUTVA assumption fails to hold in many applications due to social interaction, general equilibrium, and/or externality effects. While much progress has been made in relaxing the SUTVA assumption, most of this literature has only considered a setting with perfect compliance to treatment assignment. In practice, however, noncompliance occurs frequently where the actual treatment receipt is different from the assignment to the treatment. In this paper, we study causal effects in randomized experiments with network interference and noncompliance. Spillovers are allowed to occur at both treatment choice stage and outcome realization stage. In particular, we explicitly model treatment choices of agents as a binary game of incomplete information where resulting equilibrium treatment choice probabilities affect outcomes of interest. Outcomes are further characterized by a random coefficient model to allow for general unobserved heterogeneity in the causal effects. After defining our causal parameters of interest, we propose a simple control function estimator and derive its asymptotic properties under large-network asymptotics. We apply our methods to the randomized subsidy program of \cite{dupas} where we find evidence of spillover effects on both short-run and long-run adoption of insecticide-treated bed nets. Finally, we illustrate the usefulness of our methods by analyzing the impact of counterfactual subsidy policies.

Suggested Citation

  • Bora Kim, 2020. "Analysis of Randomized Experiments with Network Interference and Noncompliance," Papers 2012.13710, arXiv.org.
  • Handle: RePEc:arx:papers:2012.13710
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2012.13710
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McFadden, Daniel L., 1984. "Econometric analysis of qualitative response models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 24, pages 1395-1457, Elsevier.
    2. Matthew A. Masten & Alexander Torgovitsky, 2016. "Identification of Instrumental Variable Correlated Random Coefficients Models," The Review of Economics and Statistics, MIT Press, vol. 98(5), pages 1001-1005, December.
    3. Marc Ferracci & Gr�gory Jolivet & Gerard J. van den Berg, 2014. "Evidence of Treatment Spillovers Within Markets," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 812-823, December.
    4. repec:hal:pseose:halshs-00840901 is not listed on IDEAS
    5. Haiqing Xu, 2018. "Social Interactions In Large Networks: A Game Theoretic Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 257-284, February.
    6. Bruno Crépon & Esther Duflo & Marc Gurgand & Roland Rathelot & Philippe Zamora, 2013. "Do Labor Market Policies have Displacement Effects? Evidence from a Clustered Randomized Experiment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 128(2), pages 531-580.
    7. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    8. Gonzalo Vazquez-Bare, 2020. "Causal Spillover Effects Using Instrumental Variables," Papers 2003.06023, arXiv.org, revised Dec 2021.
    9. Bajari, Patrick & Hong, Han & Krainer, John & Nekipelov, Denis, 2010. "Estimating Static Models of Strategic Interactions," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 469-482.
    10. Jinyong Hahn & Geert Ridder, 2011. "Conditional Moment Restrictions and Triangular Simultaneous Equations," The Review of Economics and Statistics, MIT Press, vol. 93(2), pages 683-689, May.
    11. Edward Vytlacil & James J. Heckman, 2001. "Policy-Relevant Treatment Effects," American Economic Review, American Economic Association, vol. 91(2), pages 107-111, May.
    12. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    13. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    14. Brock, William A. & Durlauf, Steven N., 2007. "Identification of binary choice models with social interactions," Journal of Econometrics, Elsevier, vol. 140(1), pages 52-75, September.
    15. William A. Brock & Steven N. Durlauf, 2001. "Discrete Choice with Social Interactions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(2), pages 235-260.
    16. James J. Heckman, 2001. "Micro Data, Heterogeneity, and the Evaluation of Public Policy: Nobel Lecture," Journal of Political Economy, University of Chicago Press, vol. 109(4), pages 673-748, August.
    17. Edward Miguel & Michael Kremer, 2004. "Worms: Identifying Impacts on Education and Health in the Presence of Treatment Externalities," Econometrica, Econometric Society, vol. 72(1), pages 159-217, January.
    18. Pascaline Dupas, 2014. "Short‐Run Subsidies and Long‐Run Adoption of New Health Products: Evidence From a Field Experiment," Econometrica, Econometric Society, vol. 82(1), pages 197-228, January.
    19. Leung, Michael P., 2015. "Two-step estimation of network-formation models with incomplete information," Journal of Econometrics, Elsevier, vol. 188(1), pages 182-195.
    20. Sarah Baird & J. Aislinn Bohren & Craig McIntosh & Berk Özler, 2018. "Optimal Design of Experiments in the Presence of Interference," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 844-860, December.
    21. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    22. Natalia Lazzati, 2015. "Treatment response with social interactions: Partial identification via monotone comparative statics," Quantitative Economics, Econometric Society, vol. 6(1), pages 49-83, March.
    23. Geert Ridder & Shuyang Sheng, 2020. "Two-Step Estimation of a Strategic Network Formation Model with Clustering," Papers 2001.03838, arXiv.org, revised Nov 2022.
    24. Michael P. Leung, 2022. "Causal Inference Under Approximate Neighborhood Interference," Econometrica, Econometric Society, vol. 90(1), pages 267-293, January.
    25. Andrews, Donald W.K., 1992. "Generic Uniform Convergence," Econometric Theory, Cambridge University Press, vol. 8(2), pages 241-257, June.
    26. Christian N. Brinch & Magne Mogstad & Matthew Wiswall, 2017. "Beyond LATE with a Discrete Instrument," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 985-1039.
    27. Wooldridge, Jeffrey M., 2003. "Further results on instrumental variables estimation of average treatment effects in the correlated random coefficient model," Economics Letters, Elsevier, vol. 79(2), pages 185-191, May.
    28. Godlonton, Susan & Thornton, Rebecca, 2012. "Peer effects in learning HIV results," Journal of Development Economics, Elsevier, vol. 97(1), pages 118-129.
    29. Michael P. Leung, 2020. "Treatment and Spillover Effects Under Network Interference," The Review of Economics and Statistics, MIT Press, vol. 102(2), pages 368-380, May.
    30. Lee, Lung-Fei, 1984. "Tests for the Bivariate Normal Distribution in Econometric Models with Selectivity," Econometrica, Econometric Society, vol. 52(4), pages 843-863, July.
    31. Jorge Balat & Sukjin Han, 2018. "Multiple Treatments with Strategic Interaction," Papers 1805.08275, arXiv.org, revised Sep 2019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael P. Leung & Pantelis Loupos, 2022. "Graph Neural Networks for Causal Inference Under Network Confounding," Papers 2211.07823, arXiv.org, revised Mar 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    2. Gonzalo Vazquez-Bare, 2017. "Identification and Estimation of Spillover Effects in Randomized Experiments," Papers 1711.02745, arXiv.org, revised Jan 2022.
    3. Pedro Carneiro & Michael Lokshin & Nithin Umapathi, 2017. "Average and Marginal Returns to Upper Secondary Schooling in Indonesia," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 16-36, January.
    4. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    5. DiTraglia, Francis J. & García-Jimeno, Camilo & O’Keeffe-O’Donovan, Rossa & Sánchez-Becerra, Alejandro, 2023. "Identifying causal effects in experiments with spillovers and non-compliance," Journal of Econometrics, Elsevier, vol. 235(2), pages 1589-1624.
    6. Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
    7. Tafti, Elena Ashtari, 2023. "Technology, Skills, and Performance: The Case of Robots in Surgery," CINCH Working Paper Series (since 2020) 78746, Duisburg-Essen University Library, DuEPublico.
    8. Cornelissen, Thomas & Dustmann, Christian & Raute, Anna & Schönberg, Uta, 2016. "From LATE to MTE: Alternative methods for the evaluation of policy interventions," Labour Economics, Elsevier, vol. 41(C), pages 47-60.
    9. Bartalotti, Otávio & Kédagni, Désiré & Possebom, Vitor, 2023. "Identifying marginal treatment effects in the presence of sample selection," Journal of Econometrics, Elsevier, vol. 234(2), pages 565-584.
    10. Francis J. DiTraglia & Camilo Garcia-Jimeno & Rossa O'Keeffe-O'Donovan & Alejandro Sanchez-Becerra, 2020. "Identifying Causal Effects in Experiments with Spillovers and Non-compliance," Papers 2011.07051, arXiv.org, revised Jan 2023.
    11. Antill, Samuel, 2022. "Do the right firms survive bankruptcy?," Journal of Financial Economics, Elsevier, vol. 144(2), pages 523-546.
    12. Hoshino, Tadao & Yanagi, Takahide, 2023. "Treatment effect models with strategic interaction in treatment decisions," Journal of Econometrics, Elsevier, vol. 236(2).
    13. van der Klaauw, Bas, 2014. "From micro data to causality: Forty years of empirical labor economics," Labour Economics, Elsevier, vol. 30(C), pages 88-97.
    14. Domenico Depalo, 2020. "Explaining the causal effect of adherence to medication on cholesterol through the marginal patient," Health Economics, John Wiley & Sons, Ltd., vol. 29(S1), pages 110-126, October.
    15. Tadao Hoshino & Takahide Yanagi, 2021. "Causal Inference with Noncompliance and Unknown Interference," Papers 2108.07455, arXiv.org, revised Oct 2023.
    16. Elena Ashtari Tafti, 2022. "Technology, skills, and performance: the case of robots in surgery," IFS Working Papers W22/46, Institute for Fiscal Studies.
    17. Steven N. Durlauf & Yannis M. Ioannides, 2010. "Social Interactions," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 451-478, September.
    18. James J. Heckman, 2008. "Econometric Causality," International Statistical Review, International Statistical Institute, vol. 76(1), pages 1-27, April.
    19. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    20. Bonan, Jacopo & Battiston, Pietro & Bleck, Jaimie & LeMay-Boucher, Philippe & Pareglio, Stefano & Sarr, Bassirou & Tavoni, Massimo, 2021. "Social interaction and technology adoption: Experimental evidence from improved cookstoves in Mali," World Development, Elsevier, vol. 144(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2012.13710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.