IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1909.11794.html
   My bibliography  Save this paper

Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations

Author

Listed:
  • Takaaki Koike
  • Marius Hofert

Abstract

We propose a novel framework of estimating systemic risk measures and risk allocations based on Markov chain Monte Carlo (MCMC) methods. We consider a class of allocations whose jth component can be written as some risk measure of the jth conditional marginal loss distribution given the so-called crisis event. By considering a crisis event as an intersection of linear constraints, this class of allocations covers, for example, conditional Value-at-Risk (CoVaR), conditional expected shortfall (CoES), VaR contributions, and range VaR (RVaR) contributions as special cases. For this class of allocations, analytical calculations are rarely available, and numerical computations based on Monte Carlo (MC) methods often provide inefficient estimates due to the rare-event character of the crisis events. We propose an MCMC estimator constructed from a sample path of a Markov chain whose stationary distribution is the conditional distribution given the crisis event. Efficient constructions of Markov chains, such as Hamiltonian Monte Carlo and Gibbs sampler, are suggested and studied depending on the crisis event and the underlying loss distribution. The efficiency of the MCMC estimators is demonstrated in a series of numerical experiments.

Suggested Citation

  • Takaaki Koike & Marius Hofert, 2019. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Papers 1909.11794, arXiv.org, revised May 2020.
  • Handle: RePEc:arx:papers:1909.11794
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1909.11794
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simon Byrne & Mark Girolami, 2013. "Geodesic Monte Carlo on Embedded Manifolds," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 825-845, December.
    2. Targino, Rodrigo S. & Peters, Gareth W. & Shevchenko, Pavel V., 2015. "Sequential Monte Carlo Samplers for capital allocation under copula-dependent risk models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 206-226.
    3. Viral V. Acharya & Lasse H. Pedersen & Thomas Philippon & Matthew Richardson, 2017. "Measuring Systemic Risk," The Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 2-47.
    4. Yamai, Yasuhiro & Yoshiba, Toshinao, 2002. "Comparative Analyses of Expected Shortfall and Value-at-Risk: Their Estimation Error, Decomposition, and Optimization," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 20(1), pages 87-121, January.
    5. Bernardi, M. & Durante, F. & Jaworski, P., 2017. "CoVaR of families of copulas," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 8-17.
    6. Jan Dhaene & Andreas Tsanakas & Emiliano A. Valdez & Steven Vanduffel, 2012. "Optimal Capital Allocation Principles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 79(1), pages 1-28, March.
    7. Vernic, Raluca, 2006. "Multivariate skew-normal distributions with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 413-426, April.
    8. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    9. Jones, Galin L. & Haran, Murali & Caffo, Brian S. & Neath, Ronald, 2006. "Fixed-Width Output Analysis for Markov Chain Monte Carlo," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1537-1547, December.
    10. Charpentier, Arthur & Segers, Johan, 2007. "Lower tail dependence for Archimedean copulas: Characterizations and pitfalls," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 525-532, May.
    11. E. Kromer & L. Overbeck & K. Zilch, 2016. "Systemic risk measures on general measurable spaces," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(2), pages 323-357, October.
    12. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    13. Thomas Siller, 2013. "Measuring marginal risk contributions in credit portfolios," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1915-1923, December.
    14. Paul Glasserman & Jingyi Li, 2005. "Importance Sampling for Portfolio Credit Risk," Management Science, INFORMS, vol. 51(11), pages 1643-1656, November.
    15. Dirk Tasche, 2001. "Conditional Expectation as Quantile Derivative," Papers math/0104190, arXiv.org.
    16. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    17. Furman, Edward & Landsman, Zinoviy, 2008. "Economic Capital Allocations for Non-negative Portfolios of Dependent Risks," ASTIN Bulletin, Cambridge University Press, vol. 38(2), pages 601-619, November.
    18. Takaaki Koike & Mihoko Minami, 2019. "Estimation of risk contributions with MCMC," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1579-1597, September.
    19. Michael Kalkbrener, 2005. "An Axiomatic Approach To Capital Allocation," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 425-437, July.
    20. Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
    21. Dirk Tasche, 2007. "Capital Allocation to Business Units and Sub-Portfolios: the Euler Principle," Papers 0708.2542, arXiv.org, revised Jun 2008.
    22. Takaaki Koike & Mihoko Minami, 2017. "Estimation of Risk Contributions with MCMC," Papers 1702.03098, arXiv.org, revised Jan 2019.
    23. Girardi, Giulio & Tolga Ergün, A., 2013. "Systemic risk measurement: Multivariate GARCH estimation of CoVaR," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3169-3180.
    24. Klugman, Stuart A. & Parsa, Rahul, 1999. "Fitting bivariate loss distributions with copulas," Insurance: Mathematics and Economics, Elsevier, vol. 24(1-2), pages 139-148, March.
    25. Juri, Alessandro & Wuthrich, Mario V., 2002. "Copula convergence theorems for tail events," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 405-420, June.
    26. Hoffmann, Hannes & Meyer-Brandis, Thilo & Svindland, Gregor, 2016. "Risk-consistent conditional systemic risk measures," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 2014-2037.
    27. C. Gourieroux & A. Monfort, 2013. "Allocating Systemic Risk In A Regulatory Perspective," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(07), pages 1-20.
    28. Asimit, Alexandru V. & Li, Jinzhu, 2018. "Systemic Risk: An Asymptotic Evaluation," ASTIN Bulletin, Cambridge University Press, vol. 48(2), pages 673-698, May.
    29. Furman, Edward & Kuznetsov, Alexey & Zitikis, Ričardas, 2018. "Weighted risk capital allocations in the presence of systematic risk," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 75-81.
    30. Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
    31. Hannes Hoffmann & Thilo Meyer-Brandis & Gregor Svindland, 2016. "Risk-Consistent Conditional Systemic Risk Measures," Papers 1609.07897, arXiv.org.
    32. Edward Furman & Ričardas Zitikis, 2009. "Weighted Pricing Functionals With Applications to Insurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(4), pages 483-496.
    33. Laeven, Roger J. A. & Goovaerts, Marc J., 2004. "An optimization approach to the dynamic allocation of economic capital," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 299-319, October.
    34. Chen Chen & Garud Iyengar & Ciamac C. Moallemi, 2013. "An Axiomatic Approach to Systemic Risk," Management Science, INFORMS, vol. 59(6), pages 1373-1388, June.
    35. Asimit, Alexandru V. & Furman, Edward & Tang, Qihe & Vernic, Raluca, 2011. "Asymptotics for risk capital allocations based on Conditional Tail Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 310-324.
    36. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koike, Takaaki & Saporito, Yuri & Targino, Rodrigo, 2022. "Avoiding zero probability events when computing Value at Risk contributions," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 173-192.
    2. Takaaki Koike & Marius Hofert, 2020. "Modality for Scenario Analysis and Maximum Likelihood Allocation," Papers 2005.02950, arXiv.org, revised Nov 2020.
    3. Koike, Takaaki & Hofert, Marius, 2021. "Modality for scenario analysis and maximum likelihood allocation," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 24-43.
    4. Ji, Liuyan & Tan, Ken Seng & Yang, Fan, 2021. "Tail dependence and heavy tailedness in extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 282-293.
    5. Mauricio Castillo & Ricardo Soto & Broderick Crawford & Carlos Castro & Rodrigo Olivares, 2021. "A Knowledge-Based Hybrid Approach on Particle Swarm Optimization Using Hidden Markov Models," Mathematics, MDPI, vol. 9(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takaaki Koike & Marius Hofert, 2020. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Risks, MDPI, vol. 8(1), pages 1-33, January.
    2. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    3. Koike, Takaaki & Hofert, Marius, 2021. "Modality for scenario analysis and maximum likelihood allocation," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 24-43.
    4. Ji, Liuyan & Tan, Ken Seng & Yang, Fan, 2021. "Tail dependence and heavy tailedness in extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 282-293.
    5. Koike, Takaaki & Saporito, Yuri & Targino, Rodrigo, 2022. "Avoiding zero probability events when computing Value at Risk contributions," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 173-192.
    6. Takaaki Koike & Marius Hofert, 2020. "Modality for Scenario Analysis and Maximum Likelihood Allocation," Papers 2005.02950, arXiv.org, revised Nov 2020.
    7. Alexandru V. Asimit & Raluca Vernic & Riċardas Zitikis, 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model," Risks, MDPI, vol. 1(1), pages 1-20, March.
    8. Tobias Fissler & Yannick Hoga, 2021. "Backtesting Systemic Risk Forecasts using Multi-Objective Elicitability," Papers 2104.10673, arXiv.org, revised Feb 2022.
    9. Furman, Edward & Kye, Yisub & Su, Jianxi, 2021. "Multiplicative background risk models: Setting a course for the idiosyncratic risk factors distributed phase-type," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 153-167.
    10. Takaaki Koike & Mihoko Minami, 2017. "Estimation of Risk Contributions with MCMC," Papers 1702.03098, arXiv.org, revised Jan 2019.
    11. Furman, Edward & Kuznetsov, Alexey & Zitikis, Ričardas, 2018. "Weighted risk capital allocations in the presence of systematic risk," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 75-81.
    12. Ignatieva, Katja & Landsman, Zinoviy, 2019. "Conditional tail risk measures for the skewed generalised hyperbolic family," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 98-114.
    13. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, vol. 6(4), pages 1-28, December.
    14. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    15. Huang, Zhenzhen & Kwok, Yue Kuen & Xu, Ziqing, 2024. "Efficient algorithms for calculating risk measures and risk contributions in copula credit risk models," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 132-150.
    16. Dhaene, Jan & Laeven, Roger J.A. & Zhang, Yiying, 2022. "Systemic risk: Conditional distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 126-145.
    17. Tobias Fissler & Jana Hlavinová & Birgit Rudloff, 2021. "Elicitability and identifiability of set-valued measures of systemic risk," Finance and Stochastics, Springer, vol. 25(1), pages 133-165, January.
    18. van Gulick, Gerwald & De Waegenaere, Anja & Norde, Henk, 2012. "Excess based allocation of risk capital," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 26-42.
    19. Millossovich, Pietro & Tsanakas, Andreas & Wang, Ruodu, 2024. "A theory of multivariate stress testing," European Journal of Operational Research, Elsevier, vol. 318(3), pages 851-866.
    20. Mohammed, Nawaf & Furman, Edward & Su, Jianxi, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of conditional tail expectation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 425-436.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1909.11794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.