IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v38y2008i02p601-619_01.html
   My bibliography  Save this article

Economic Capital Allocations for Non-negative Portfolios of Dependent Risks

Author

Listed:
  • Furman, Edward
  • Landsman, Zinoviy

Abstract

In this paper we explore the problem of economic capital allocations in the context of non-negative multivariate (insurance) risks possessing a dependence structure. We derive a general result and illustrate it with a number of useful examples. One such example, for instance, develops explicit expressions for the discussed economic capital decomposition rule when the underlying portfolio consists of dependent compound Poisson risks.

Suggested Citation

  • Furman, Edward & Landsman, Zinoviy, 2008. "Economic Capital Allocations for Non-negative Portfolios of Dependent Risks," ASTIN Bulletin, Cambridge University Press, vol. 38(2), pages 601-619, November.
  • Handle: RePEc:cup:astinb:v:38:y:2008:i:02:p:601-619_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100015300/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiaohu & Lin, Jianhua, 2011. "Stochastic orders in time transformed exponential models with applications," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 47-52, July.
    2. Denuit, M. & Robert, C.Y., 2020. "Ultimate behavior of conditional mean risk sharing for independent compound Panjer-Katz sums with gamma and Pareto severities," LIDAM Discussion Papers ISBA 2020014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    4. Cossette, Hélène & Marceau, Etienne & Perreault, Samuel, 2015. "On two families of bivariate distributions with exponential marginals: Aggregation and capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 214-224.
    5. Asimit, Alexandru V. & Furman, Edward & Tang, Qihe & Vernic, Raluca, 2011. "Asymptotics for risk capital allocations based on Conditional Tail Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 310-324.
    6. Denuit, Michel, 2019. "Size-biased transform and conditional mean risk sharing, with application to P2P insurance and tontines," LIDAM Discussion Papers ISBA 2019010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Takaaki Koike & Marius Hofert, 2019. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Papers 1909.11794, arXiv.org, revised May 2020.
    8. Denuit, Michel & Robert, Christian Y., 2020. "Conditional tail expectation decomposition and conditional mean risk sharing for dependent and conditionally independent risks," LIDAM Discussion Papers ISBA 2020018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Denuit, Michel & Robert, Christian Y., 2020. "From risk sharing to risk transfer: the analytics of collaborative insurance," LIDAM Discussion Papers ISBA 2020017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Devolder, Pierre, 2019. "Une alternative a la pension a points : le compte individuel pension en euros," LIDAM Discussion Papers ISBA 2019011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Denuit, Michel, 2019. "Size-biased risk measures of compound sums," LIDAM Discussion Papers ISBA 2019009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Takaaki Koike & Marius Hofert, 2020. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Risks, MDPI, vol. 8(1), pages 1-33, January.
    13. Cossette, Hélène & Mailhot, Mélina & Marceau, Étienne, 2012. "TVaR-based capital allocation for multivariate compound distributions with positive continuous claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 247-256.
    14. Asimit, Alexandru V. & Furman, Edward & Vernic, Raluca, 2010. "On a multivariate Pareto distribution," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 308-316, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:38:y:2008:i:02:p:601-619_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.