IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v96y2021icp153-167.html
   My bibliography  Save this article

Multiplicative background risk models: Setting a course for the idiosyncratic risk factors distributed phase-type

Author

Listed:
  • Furman, Edward
  • Kye, Yisub
  • Su, Jianxi

Abstract

Multiplicative background risk models in which the idiosyncratic risk factors are assumed to be distributed exponentially, and the systemic risk factor has an arbitrary distribution on the non-negative half of the real line have seen a great variety of applications in actuarial science. Admittedly, these structures, which are well-known to mathematical statisticians under the name of exponential mixtures, enjoy remarkable level of technical tractability and so are a convenient tool for modelling risk components in a portfolio of an insurer. That said, the assumption of exponentiality is merely a mathematical nicety and does not have to reflect reality, yet the works that loosen this assumption are rare. The goals of this paper are two-fold. Firstly, we pursue a holistic approach and discuss in detail the multiplicative background risk models with arbitrarily distributed idiosyncratic and systemic risk factors. In this respect, we systematize the existing results and report some new ones. Secondly, and more importantly, we focus on the special case when the distribution of the idiosyncratic risk factors is phase-type. The novel theory, which allows to introduce significant heterogeneity in the idiosyncratic risk factors, is illustrated by numerous numerical examples borrowed from the context of the determination and allocation of economic capital. The examples suggest that a little departure from exponentiality can have substantial impact on the outcome of risk analysis.

Suggested Citation

  • Furman, Edward & Kye, Yisub & Su, Jianxi, 2021. "Multiplicative background risk models: Setting a course for the idiosyncratic risk factors distributed phase-type," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 153-167.
  • Handle: RePEc:eee:insuma:v:96:y:2021:i:c:p:153-167
    DOI: 10.1016/j.insmatheco.2020.11.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668720301578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2020.11.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albrecher, Hansjörg & Constantinescu, Corina & Loisel, Stephane, 2011. "Explicit ruin formulas for models with dependence among risks," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 265-270, March.
    2. Stéphane Loisel, 2011. "On ruin models with dependent risks," Post-Print hal-00671926, HAL.
    3. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted premium calculation principles," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 459-465, February.
    4. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    5. Vadim Semenikhine & Edward Furman & Jianxi Su, 2018. "On a Multiplicative Multivariate Gamma Distribution with Applications in Insurance," Risks, MDPI, vol. 6(3), pages 1-20, August.
    6. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    7. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    8. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre & Veilleux, Déry, 2018. "Dependent risk models with Archimedean copulas: A computational strategy based on common mixtures and applications," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 53-71.
    9. Su, Jianxi & Furman, Edward, 2017. "Multiple risk factor dependence structures: Distributional properties," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 56-68.
    10. Raluca Vernic, 2011. "Tail Conditional Expectation for the Multivariate Pareto Distribution of the Second Kind: Another Approach," Methodology and Computing in Applied Probability, Springer, vol. 13(1), pages 121-137, March.
    11. Sanjiv R. Das & Darrell Duffie & Nikunj Kapadia & Leandro Saita, 2007. "Common Failings: How Corporate Defaults Are Correlated," Journal of Finance, American Finance Association, vol. 62(1), pages 93-117, February.
    12. Alexandru V. Asimit & Raluca Vernic & Ricardas Zitikis, 2016. "Background Risk Models and Stepwise Portfolio Construction," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 805-827, September.
    13. Côté, Marie-Pier & Genest, Christian, 2019. "Dependence in a background risk model," Journal of Multivariate Analysis, Elsevier, vol. 172(C), pages 28-46.
    14. Furman, Edward & Landsman, Zinoviy, 2006. "Tail Variance Premium with Applications for Elliptical Portfolio of Risks," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 433-462, November.
    15. Furman, Edward & Zitikis, Ričardas, 2010. "General Stein-Type Covariance Decompositions with Applications to Insurance and Finance," ASTIN Bulletin, Cambridge University Press, vol. 40(1), pages 369-375, May.
    16. Edward Furman & Ričardas Zitikis, 2009. "Weighted Pricing Functionals With Applications to Insurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(4), pages 483-496.
    17. Su, Jianxi & Furman, Edward, 2017. "Multiple risk factor dependence structures: Copulas and related properties," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 109-121.
    18. Su, Jianxi & Furman, Edward, 2017. "A Form Of Multivariate Pareto Distribution With Applications To Financial Risk Measurement," ASTIN Bulletin, Cambridge University Press, vol. 47(1), pages 331-357, January.
    19. Hiroyuki Okamura & Tadashi Dohi & Kishor S. Trivedi, 2013. "Improvement of expectation–maximization algorithm for phase‐type distributions with grouped and truncated data," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 29(2), pages 141-156, March.
    20. Asimit, Alexandru V. & Furman, Edward & Vernic, Raluca, 2010. "On a multivariate Pareto distribution," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 308-316, April.
    21. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    22. Michael Kalkbrener, 2005. "An Axiomatic Approach To Capital Allocation," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 425-437, July.
    23. Joseph Kim, 2010. "Conditional Tail Moments of the Exponential Family and Its Related Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 14(2), pages 198-216.
    24. Hua, Lei, 2017. "On a bivariate copula with both upper and lower full-range tail dependence," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 94-104.
    25. Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
    26. Olga Furman & Edward Furman, 2010. "On Some Layer-Based Risk Measures with Applications to Exponential Dispersion Models," Journal of Probability and Statistics, Hindawi, vol. 2010, pages 1-19, June.
    27. Jan Dhaene & Andreas Tsanakas & Emiliano A. Valdez & Steven Vanduffel, 2012. "Optimal Capital Allocation Principles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 79(1), pages 1-28, March.
    28. Vernic, Raluca, 2006. "Multivariate skew-normal distributions with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 413-426, April.
    29. Ren, Jiandong, 2010. "Recursive Formulas for Compound Phase Distributions – Univariate and Bivariate Cases," ASTIN Bulletin, Cambridge University Press, vol. 40(2), pages 615-629, November.
    30. Sarabia, José María & Gómez-Déniz, Emilio & Prieto, Faustino & Jordá, Vanesa, 2018. "Aggregation Of Dependent Risks In Mixtures Of Exponential Distributions And Extensions," ASTIN Bulletin, Cambridge University Press, vol. 48(3), pages 1079-1107, September.
    31. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    32. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    33. Sarabia, José María & Gómez-Déniz, Emilio & Prieto, Faustino & Jordá, Vanesa, 2016. "Risk aggregation in multivariate dependent Pareto distributions," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 154-163.
    34. Furman, Edward & Landsman, Zinoviy, 2005. "Risk capital decomposition for a multivariate dependent gamma portfolio," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 635-649, December.
    35. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    36. Su, Jianxi & Hua, Lei, 2017. "A general approach to full-range tail dependence copulas," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 49-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N. V. Gribkova & J. Su & R. Zitikis, 2024. "Assessing the coverage probabilities of fixed-margin confidence intervals for the tail conditional allocation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(5), pages 821-850, October.
    2. Mercè Claramunt, M. & Lefèvre, Claude & Loisel, Stéphane & Montesinos, Pierre, 2022. "Basis risk management and randomly scaled uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 123-139.
    3. N. V. Gribkova & J. Su & R. Zitikis, 2022. "Empirical tail conditional allocation and its consistency under minimal assumptions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 713-735, August.
    4. Eric C. K. Cheung & Oscar Peralta & Jae-Kyung Woo, 2021. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Papers 2201.11122, arXiv.org.
    5. Gribkova, N.V. & Su, J. & Zitikis, R., 2022. "Inference for the tail conditional allocation: Large sample properties, insurance risk assessment, and compound sums of concomitants," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 199-222.
    6. Andrew Fleck & Edward Furman & Yang Shen, 2024. "Stochastic Loss Reserving: Dependence and Estimation," Papers 2410.14985, arXiv.org.
    7. Denuit, Michel & Ortega-Jimenez, Patricia & Robert, Christian Y., 2024. "No-sabotage under conditional mean risk sharing of dependent-by-mixture insurance losses," LIDAM Discussion Papers ISBA 2024019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Marri, Fouad & Moutanabbir, Khouzeima, 2022. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 75-90.
    9. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    2. Eric C. K. Cheung & Oscar Peralta & Jae-Kyung Woo, 2021. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Papers 2201.11122, arXiv.org.
    3. Mohammed, Nawaf & Furman, Edward & Su, Jianxi, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of conditional tail expectation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 425-436.
    4. Nawaf Mohammed & Edward Furman & Jianxi Su, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of Conditional Tail Expectation," Papers 2102.05003, arXiv.org, revised Aug 2021.
    5. Furman, Edward & Kuznetsov, Alexey & Zitikis, Ričardas, 2018. "Weighted risk capital allocations in the presence of systematic risk," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 75-81.
    6. Su, Jianxi & Furman, Edward, 2017. "Multiple risk factor dependence structures: Distributional properties," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 56-68.
    7. Fouad Marri & Khouzeima Moutanabbir, 2021. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Papers 2103.10989, arXiv.org.
    8. Fouad Marri & Khouzeima Moutanabbir, 2021. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Working Papers hal-03169291, HAL.
    9. Jianxi Su & Edward Furman, 2016. "A form of multivariate Pareto distribution with applications to financial risk measurement," Papers 1607.04737, arXiv.org.
    10. Alexandru V. Asimit & Raluca Vernic & Riċardas Zitikis, 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model," Risks, MDPI, vol. 1(1), pages 1-20, March.
    11. Asimit, Alexandru V. & Furman, Edward & Tang, Qihe & Vernic, Raluca, 2011. "Asymptotics for risk capital allocations based on Conditional Tail Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 310-324.
    12. Marri, Fouad & Moutanabbir, Khouzeima, 2022. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 75-90.
    13. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    14. Furman, Edward & Hackmann, Daniel & Kuznetsov, Alexey, 2020. "On log-normal convolutions: An analytical–numerical method with applications to economic capital determination," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 120-134.
    15. Vadim Semenikhine & Edward Furman & Jianxi Su, 2018. "On a Multiplicative Multivariate Gamma Distribution with Applications in Insurance," Risks, MDPI, vol. 6(3), pages 1-20, August.
    16. Kim, Joseph H.T. & Kim, So-Yeun, 2019. "Tail risk measures and risk allocation for the class of multivariate normal mean–variance mixture distributions," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 145-157.
    17. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    18. Takaaki Koike & Marius Hofert, 2019. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Papers 1909.11794, arXiv.org, revised May 2020.
    19. Nadezhda Gribkova & Ričardas Zitikis, 2019. "Weighted allocations, their concomitant-based estimators, and asymptotics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 811-835, August.
    20. Jianxi Su & Edward Furman, 2016. "Multiple risk factor dependence structures: Distributional properties," Papers 1607.04739, arXiv.org.

    More about this item

    Keywords

    Systemic risk; Size-biased distribution; Phase-type distribution; Conditional tail expectation; Economic capital allocation;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:96:y:2021:i:c:p:153-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.