IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v19y2019i9p1579-1597.html
   My bibliography  Save this article

Estimation of risk contributions with MCMC

Author

Listed:
  • Takaaki Koike
  • Mihoko Minami

Abstract

Determining risk contributions of unit exposures to portfolio-wide economic capital is an important task in financial risk management. Computing risk contributions involves difficulties caused by rare-event simulations. In this study, we address the problem of estimating risk contributions when the total risk is measured by value-at-risk (VaR). Our proposed estimator of VaR contributions is based on the Metropolis-Hasting (MH) algorithm, which is one of the most prevalent Markov chain Monte Carlo (MCMC) methods. Unlike existing estimators, our MH-based estimator consists of samples from the conditional loss distribution given a rare event of interest. This feature enhances sample efficiency compared with the crude Monte Carlo method. Moreover, our method has consistency and asymptotic normality, and is widely applicable to various risk models having a joint loss density. Our numerical experiments based on simulation and real-world data demonstrate that in various risk models, even those having high-dimensional (≈500) inhomogeneous margins, our MH estimator has smaller bias and mean squared error when compared with existing estimators.

Suggested Citation

  • Takaaki Koike & Mihoko Minami, 2019. "Estimation of risk contributions with MCMC," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1579-1597, September.
  • Handle: RePEc:taf:quantf:v:19:y:2019:i:9:p:1579-1597
    DOI: 10.1080/14697688.2019.1588469
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2019.1588469
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2019.1588469?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takaaki Koike & Marius Hofert, 2019. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Papers 1909.11794, arXiv.org, revised May 2020.
    2. Denuit, Michel & Robert, Christian Y., 2021. "Stop-loss protection for a large P2P insurance pool," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 210-233.
    3. Koike, Takaaki & Saporito, Yuri & Targino, Rodrigo, 2022. "Avoiding zero probability events when computing Value at Risk contributions," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 173-192.
    4. Denuit, Michel & Robert, Christian Y., 2021. "Efron’s asymptotic monotonicity property in the Gaussian stable domain of attraction," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    5. Koike, Takaaki & Hofert, Marius, 2021. "Modality for scenario analysis and maximum likelihood allocation," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 24-43.
    6. Takaaki Koike & Marius Hofert, 2020. "Modality for Scenario Analysis and Maximum Likelihood Allocation," Papers 2005.02950, arXiv.org, revised Nov 2020.
    7. Huang, Zhenzhen & Kwok, Yue Kuen & Xu, Ziqing, 2024. "Efficient algorithms for calculating risk measures and risk contributions in copula credit risk models," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 132-150.
    8. Takaaki Koike & Marius Hofert, 2020. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Risks, MDPI, vol. 8(1), pages 1-33, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:19:y:2019:i:9:p:1579-1597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.