IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1903.06230.html
   My bibliography  Save this paper

Dynamic Energy Management

Author

Listed:
  • Nicholas Moehle
  • Enzo Busseti
  • Stephen Boyd
  • Matt Wytock

Abstract

We present a unified method, based on convex optimization, for managing the power produced and consumed by a network of devices over time. We start with the simple setting of optimizing power flows in a static network, and then proceed to the case of optimizing dynamic power flows, i.e., power flows that change with time over a horizon. We leverage this to develop a real-time control strategy, model predictive control, which at each time step solves a dynamic power flow optimization problem, using forecasts of future quantities such as demands, capacities, or prices, to choose the current power flow values. Finally, we consider a useful extension of model predictive control that explicitly accounts for uncertainty in the forecasts. We mirror our framework with an object-oriented software implementation, an open-source Python library for planning and controlling power flows at any scale. We demonstrate our method with various examples. Appendices give more detail about the package, and describe some basic but very effective methods for constructing forecasts from historical data.

Suggested Citation

  • Nicholas Moehle & Enzo Busseti & Stephen Boyd & Matt Wytock, 2019. "Dynamic Energy Management," Papers 1903.06230, arXiv.org.
  • Handle: RePEc:arx:papers:1903.06230
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1903.06230
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Long, Sebastian & Marjanovic, Ognjen & Parisio, Alessandra, 2019. "Generalised control-oriented modelling framework for multi-energy systems," Applied Energy, Elsevier, vol. 235(C), pages 320-331.
    2. Tengfei Ma & Junyong Wu & Liangliang Hao & Huaguang Yan & Dezhi Li, 2018. "A Real-Time Pricing Scheme for Energy Management in Integrated Energy Systems: A Stackelberg Game Approach," Energies, MDPI, vol. 11(10), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiayu Cheng & Dongliang Duan & Xiang Cheng & Liuqing Yang & Shuguang Cui, 2021. "Adaptive Control for Energy Exchange with Probabilistic Interval Predictors in Isolated Microgrids," Energies, MDPI, vol. 14(2), pages 1-23, January.
    2. Jiayu Cheng & Dongliang Duan & Xiang Cheng & Liuqing Yang & Shuguang Cui, 2020. "Probabilistic Microgrid Energy Management with Interval Predictions," Energies, MDPI, vol. 13(12), pages 1-23, June.
    3. Guillermo Angeris & Akshay Agrawal & Alex Evans & Tarun Chitra & Stephen Boyd, 2021. "Constant Function Market Makers: Multi-Asset Trades via Convex Optimization," Papers 2107.12484, arXiv.org.
    4. Shane Barratt & Stephen Boyd, 2020. "Multi-Period Liability Clearing via Convex Optimal Control," Papers 2005.09066, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    2. Carli, Raffaele & Dotoli, Mariagrazia & Jantzen, Jan & Kristensen, Michael & Ben Othman, Sarah, 2020. "Energy scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the Ballen marina in Samsø," Energy, Elsevier, vol. 198(C).
    3. Jerónimo Ramos-Teodoro & Adrián Giménez-Miralles & Francisco Rodríguez & Manuel Berenguel, 2020. "A Flexible Tool for Modeling and Optimal Dispatch of Resources in Agri-Energy Hubs," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    4. Renato Ferrero & Mario Collotta & Maria Victoria Bueno-Delgado & Hsing-Chung Chen, 2020. "Smart Management Energy Systems in Industry 4.0," Energies, MDPI, vol. 13(2), pages 1-3, January.
    5. Cai, Qingsen & Luo, XingQi & Wang, Peng & Gao, Chunyang & Zhao, Peiyu, 2022. "Hybrid model-driven and data-driven control method based on machine learning algorithm in energy hub and application," Applied Energy, Elsevier, vol. 305(C).
    6. Antonio Pepiciello & Alfredo Vaccaro & Mario Mañana, 2019. "Robust Optimization of Energy Hubs Operation Based on Extended Affine Arithmetic," Energies, MDPI, vol. 12(12), pages 1-15, June.
    7. Li, Jiaxi & Wang, Dan & Jia, Hongjie & Lei, Yang & Zhou, Tianshuo & Guo, Ying, 2022. "Mechanism analysis and unified calculation model of exergy flow distribution in regional integrated energy system," Applied Energy, Elsevier, vol. 324(C).
    8. Chofreh, Abdoulmohammad Gholamzadeh & Goni, Feybi Ariani & Klemeš, Jiří Jaromír & Seyed Moosavi, Seyed Mohsen & Davoudi, Mehdi & Zeinalnezhad, Masoomeh, 2021. "Covid-19 shock: Development of strategic management framework for global energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Lang Zhao & Yuan Zeng & Zhidong Wang & Yizheng Li & Dong Peng & Yao Wang & Xueying Wang, 2023. "Robust Optimal Scheduling of Integrated Energy Systems Considering the Uncertainty of Power Supply and Load in the Power Market," Energies, MDPI, vol. 16(14), pages 1-14, July.
    10. Aviad Navon & Gefen Ben Yosef & Ram Machlev & Shmuel Shapira & Nilanjan Roy Chowdhury & Juri Belikov & Ariel Orda & Yoash Levron, 2020. "Applications of Game Theory to Design and Operation of Modern Power Systems: A Comprehensive Review," Energies, MDPI, vol. 13(15), pages 1-35, August.
    11. Moser, A. & Muschick, D. & Gölles, M. & Nageler, P. & Schranzhofer, H. & Mach, T. & Ribas Tugores, C. & Leusbrock, I. & Stark, S. & Lackner, F. & Hofer, A., 2020. "A MILP-based modular energy management system for urban multi-energy systems: Performance and sensitivity analysis," Applied Energy, Elsevier, vol. 261(C).
    12. Mu, Yunfei & Chen, Wanqing & Yu, Xiaodan & Jia, Hongjie & Hou, Kai & Wang, Congshan & Meng, Xianjun, 2020. "A double-layer planning method for integrated community energy systems with varying energy conversion efficiencies," Applied Energy, Elsevier, vol. 279(C).
    13. Nurcan Yarar & Yeliz Yoldas & Serkan Bahceci & Ahmet Onen & Jaesung Jung, 2024. "A Comprehensive Review Based on the Game Theory with Energy Management and Trading," Energies, MDPI, vol. 17(15), pages 1-30, July.
    14. Jiang, Yanni & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "Electricity trading pricing among prosumers with game theory-based model in energy blockchain environment," Applied Energy, Elsevier, vol. 271(C).
    15. Tomas Baležentis & Dalia Štreimikienė, 2019. "Sustainability in the Electricity Sector through Advanced Technologies: Energy Mix Transition and Smart Grid Technology in China," Energies, MDPI, vol. 12(6), pages 1-21, March.
    16. Shijun Chen & Huwei Chen & Shanhe Jiang, 2019. "Optimal Decision-Making to Charge Electric Vehicles in Heterogeneous Networks: Stackelberg Game Approach," Energies, MDPI, vol. 12(2), pages 1-20, January.
    17. Lu Qu & Bin Ouyang & Zhichang Yuan & Rong Zeng, 2019. "Steady-State Power Flow Analysis of Cold-Thermal-Electric Integrated Energy System Based on Unified Power Flow Model," Energies, MDPI, vol. 12(23), pages 1-16, November.
    18. Qiu, Dawei & Dong, Zihang & Zhang, Xi & Wang, Yi & Strbac, Goran, 2022. "Safe reinforcement learning for real-time automatic control in a smart energy-hub," Applied Energy, Elsevier, vol. 309(C).
    19. Li, Zilu & Peng, Xiangang & Cui, Wenbo & Xu, Yilin & Liu, Jianan & Yuan, Haoliang & Lai, Chun Sing & Lai, Loi Lei, 2024. "A novel scenario generation method of renewable energy using improved VAEGAN with controllable interpretable features," Applied Energy, Elsevier, vol. 363(C).
    20. Liu, Liu & Wang, Dan & Hou, Kai & Jia, Hong-jie & Li, Si-yuan, 2020. "Region model and application of regional integrated energy system security analysis," Applied Energy, Elsevier, vol. 260(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1903.06230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.